Experience powerfully influences neuronal function and cognitive performance, but the cellular and molecular events underlying the experience-dependent enhancement of mental ability have remained elusive. In particular, the mechanisms that couple the external environment to the genomic changes underpinning this improvement are unknown. To address this, we have used male mice harboring an inactivating mutation of mitogen-and stress-activated protein kinase 1 (MSK1), a brain-derived neurotrophic factor (BDNF)-activated enzyme downstream of the mitogen-activated protein kinase (MAPK) pathway. We show that MSK1 is required for the full extent of experience-induced improvement of spatial memory, for the expansion of the dynamic range of synapses, exemplified by the enhancement of hippocampal long-term potentiation (LTP) and long-term depression (LTD), and for the regulation of the majority of genes influenced by enrichment. In addition, and unexpectedly, we show that experience is associated with an MSK1-dependent downregulation of key MAPK and plasticity-related genes, notably of EGR1/Zif268 and Arc/Arg3.1, suggesting the establishment of a novel genomic landscape adapted to experience. By coupling experience to homeostatic changes in gene expression MSK1, represents a prime mechanism through which the external environment has an enduring influence on gene expression, synaptic function, and cognition.
The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.