Cellular transplantation is a promising technology with great clinical potential in regenerative medicine and disease management. However, effective control over patient immunological response is essential. The encapsulation of cells within hydrogel microspheres is an increasingly prevalent method for the protection of cellular grafts from immune rejection. Microfluidic "chip" reactors present elegant solutions to several capsule generation issues, including the requirement for intercapsule uniformity, high reproducibility, and sterile, good manufacturing practice compliance. This study presents a novel method for the on-chip production of stable, highly monodisperse alginate microspheres and demonstrates its utility in the encapsulation of an immortalized human-derived cell line. Four populations of immortalized human embryonic kidney cells ͑HEK293͒ were encapsulated on chip within monodisperse alginate capsules. Cell viability measurements were recorded for each of the four encapsulated populations for 90 days.
Object recognition tasks detect cognitive deficits in transgenic Alzheimer’s disease (AD) mouse models. Object recognition, however, is not a unitary process, and there are many uncharacterized facets of object processing with relevance to AD. We therefore systematically evaluated object processing in 5xFAD and 3xTG AD mice to clarify the nature of object recognition-related deficits. Twelve-month-old male and female 5xFAD and 3xTG mice were assessed on tasks for object identity recognition, spatial recognition, and multisensory object perception. Memory and multisensory perceptual impairments were observed, with interesting dissociations between transgenic AD strains and sex that paralleled neuropathological changes. Overreliance on the widespread “object recognition” task threatens to slow discovery of potentially significant and clinically relevant behavioural effects related to this multifaceted cognitive function. The current results support the use of carefully designed object-based test batteries to clarify the relationship between “object recognition” impairments and specific aspects of AD pathology in rodent models.
Open Science has changed research by making data accessible and shareable, contributing to replicability to accelerate and disseminate knowledge. However, for rodent cognitive studies the availability of tools to share and disseminate data is scarce. Automated touchscreen-based tests enable systematic cognitive assessment with easily standardised outputs that can facilitate data dissemination. Here we present an integration of touchscreen cognitive testing with an open-access database public repository (mousebytes.ca), as well as a Web platform for knowledge dissemination (https://touchscreencognition.org). We complement these resources with the largest dataset of age-dependent high-level cognitive assessment of mouse models of Alzheimer’s disease, expanding knowledge of affected cognitive domains from male and female mice of three strains. We envision that these new platforms will enhance sharing of protocols, data availability and transparency, allowing meta-analysis and reuse of mouse cognitive data to increase the replicability/reproducibility of datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.