Background Because the success of deworming programs targeting soil-transmitted helminths (STHs) is evaluated through the periodically assessment of prevalence and infection intensities, the use of the correct diagnostic method is of utmost importance. The STH community has recently published for each phase of a deworming program the minimal criteria that a potential diagnostic method needs to meet, the so-called target product profiles (TPPs). Methodology We compared the diagnostic performance of a single Kato-Katz (reference method) with that of other microscopy-based methods (duplicate Kato-Katz, Mini-FLOTAC and FECPAK G2 ) and one DNA-based method (qPCR) for the detection and quantification of STH infections in three drug efficacy trials in Ethiopia, Lao PDR, and Tanzania. Furthermore, we evaluated a selection of minimal diagnostic criteria of the TPPs. Principal findings All diagnostic methods showed a clinical sensitivity of ≥90% for all STH infections of moderate-to-heavy intensities. For infections of very low intensity, only qPCR resulted in a sensitivity that was superior to a single Kato-Katz for all STHs. Compared to the reference method, both Mini-FLOTAC and FECPAK G2 resulted in significantly lower fecal egg counts for some STHs, leading to a substantial underestimation of the infection intensity. For qPCR, there was a positive significant correlation between the egg counts of a single Kato-Katz and the DNA concentration. Conclusions/Significance Our results indicate that the diagnostic performance of a single Kato-Katz is underestimated by the community and that diagnostic specific thresholds to classify intensity of infection are warranted for Mini-FLOTAC, FECPAK G2 and qPCR. When we strictly apply the TPPs, Kato-Katz is the only microscopy-based method that meets the minimal diagnostic criteria for application in the planning, monitoring and evaluation phase of an STH program. qPCR is the only method that could be considered in the phase that aims to seek confirmation for cessation of program. Trial registration ClinicalTrials.gov NCT03465488
BackgroundIn Sub-Saharan African countries, including Ethiopia, malaria in pregnancy is a major public health threat which results in significant morbidities and mortalities among pregnant women and their fetuses. In malaria endemic areas, Plasmodium infections tend to remain asymptomatic yet causing significant problems like maternal anemia, low birth weight, premature births, and still birth. This study was conducted to determine the prevalence and predictors of asymptomatic Plasmodium infection among pregnant women in the rural surroundings of Arba Minch Town, Southern Ethiopia.MethodsA community based cross-sectional study comprising multistage sampling was conducted between April and June, 2013. Socio-demographic data were collected by using a semi-structured questionnaire. Plasmodium infection was diagnosed by using Giemsa-stained blood smear microscopy and a rapid diagnostic test (SD BIOLINE Malaria Ag Pf/Pv POCT, standard diagnostics, inc., Korea).ResultsOf the total 341 pregnant women participated in this study, 9.1% (31/341) and 9.7% (33/341) were confirmed to be infected with Plasmodium species by microscopy and rapid diagnostic tests (RDTs), respectively. The geometric mean of parasite density was 2392 parasites per microliter (μl); 2275/ μl for P. falciparum and 2032/ μl for P. vivax. Parasitemia was more likely to occur in primigravidae (Adjusted odds ratio (AOR): 9.4, 95% confidence interval (CI): 4.3–60.5), secundigravidae (AOR: 6.3, 95% CI: 2.9–27.3), using insecticide treated bed net (ITN) sometimes (AOR: 3.2, 95% CI: 1.8- 57.9), not using ITN at all (AOR: 4.6, 95% CI: 1.4–14.4) compared to multigravidae and using ITN always, respectively.ConclusionAsymptomatic malaria in this study is low compared to other studies’ findings. Nevertheless, given the high risk of malaria during pregnancy, pregnant women essentially be screened for asymptomatic Plasmodium infection and be treated promptly via the antenatal care (ANC) services.
BackgroundA DNA extraction and preservation protocol that yields sufficient and qualitative DNA is pivotal for the success of any nucleic acid amplification test (NAAT), but it still poses a challenge for soil-transmitted helminths (STHs), including Ascaris lumbricoides, Trichuris trichiura and the two hookworms (Necator americanus and Ancylostoma duodenale). In the present study, we assessed the impact of different DNA extraction and preservativation protocols on STH-specific DNA amplification from stool.Methodology and principal findingsIn a first experiment, DNA was extracted from 37 stool samples with variable egg counts for T. trichiura and N. americanus applying two commercial kits, both with and without a prior bead beating step. The DNA concentration of T. trichiura and N. americanus was estimated by means of qPCR. The results showed clear differences in DNA concentration across both DNA extraction kits, which varied across both STHs. They also indicated that adding a bead beating step substantially improved DNA recovery, particularly when the FECs were high. In a second experiment, 20 stool samples with variable egg counts for A. lumbricoides, T. trichiura and N. americanus were preserved in either 96% ethanol, 5% potassium dichromate or RNAlater and were stored at 4°C for 65, 245 and 425 days. DNA was extracted using the DNeasy Blood & Tissue kit with a bead beating step. Stool samples preserved in ethanol proved to yield higher DNA concentrations as FEC increased, although stool samples appeared to be stable over time in all preservatives.ConclusionsThe choice of DNA extraction kit significantly affects the outcome of NAATs. Given the clear benefit of bead beating and our validation of ethanol for (long-term) preservation, we recommend that these aspects of the protocol should be adopted by any stool sampling and DNA extraction protocol for downstream NAAT-based detection and quantification of STHs.
Background Preventive chemotherapy (PC) with benzimidazole drugs is the backbone of soil-transmitted helminth (STH) control programs. Over the past decade, drug coverage has increased and with it, the possibility of developing anthelmintic resistance. It is therefore of utmost importance to monitor drug efficacy. Currently, a variety of novel diagnostic methods are available, but it remains unclear whether they can be used to monitor drug efficacy. In this study, we compared the efficacy of albendazole (ALB) measured by different diagnostic methods in a head-to-head comparison to the recommended single Kato-Katz. Methods An ALB efficacy trial was performed in 3 different STH-endemic countries (Ethiopia, Lao PDR and Tanzania), each with a different PC-history. During these trials, stool samples were evaluated with Kato-Katz (single and duplicate), Mini-FLOTAC, FECPAK G2 , and qPCR. The reduction rate in mean eggs per gram of stool (ERR) and mean genome equivalents / ml of DNA extract (GERR) were calculated to estimate drug efficacy. Principal findings and conclusions The results of the efficacy trials showed that none of the evaluated diagnostic methods could provide reduction rates that were equivalent to a single Kato-Katz for all STH. However, despite differences in clinical sensitivity and egg counts, they agreed in classifying efficacy according to World Health Organization (WHO) guidelines. This demonstrates that diagnostic methods for assessing drug efficacy should be validated with their intended-use in mind and that other factors like user-friendliness and costs will likely be important factors in driving the choice of diagnostics. In addition, ALB efficacy against STH infections was lower in sites with a longer history of PC. Yet, further research is needed to identify factors that contribute to this finding and to verify whether reduced efficacy can be associated with mutations in the β-tubulin gene that have previously been linked to anthelmintic resistance. Trial registration ClinicalTrials.gov NCT03465488 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.