<span>This paper shows the outcomes for four optimization models based on fuzzy inference systems, intervened using Quasi-Newton and genetic algorithms, to early assess</span><span> bean plants’ leaves for Xanthomonas campestris<em> </em>disease. The assessment on the status of the plant (sane or ill) is defined through the intensity of the color in the RGB scale for the data-sets and images to analyze the implementation of the models. The best model performance is 99.68% when compared with the training data and a 94% effectiveness rate on the detection of Xanthomonas campestris in a bean leave image. Therefore, these results would allow farmers to take early measures to reduce the impact of the disease on the look and performance of green bean crops.</span>
En el presente documento se exponen y analizan las ventajas que se obtiene al tener un manejo favorable de la temperatura tanto ambiental como radicular, y la manera de ajustarlas en los cultivos hidropónicos, mediante el uso de algunos sistemas de control basados en el uso de actuadores, sensores y un microcontrolador que actúa como componente mediador de procesamiento entre los elementos. Se presenta un esquema del diseño básico del componente encargado de controlar las variables de temperatura y flujo de líquidos, así mismo las técnicas para su construcción de manera iterativa e incremental. La implementación de este prototipo contrarresto los cambios abruptos de temperatura evitando daños en el cultivo cuando los mismos se producen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.