A lot of today's data is generated incrementally over time by a large variety of producers. This data ranges from quantitative sensor observations produced by robot systems to complex unstructured human-generated texts on social media. With data being so abundant, making sense of these streams of data through reasoning is challenging. Reasoning over streams is particularly relevant for autonomous robotic systems that operate in a physical environment. They commonly observe this environment through incremental observations, gradually refining information about their surroundings. This makes robust management of streaming data and its refinement an important problem. Many contemporary approaches to stream reasoning focus on the issue of querying data streams in order to generate higher-level information by relying on wellknown database approaches. Other approaches apply logic-based reasoning techniques, which rarely consider the provenance of their symbolic interpretations. In this thesis, we integrate techniques for logic-based spatio-temporal stream reasoning with the adaptive generation of the state streams needed to do the reasoning over. This combination deals with both the challenge of reasoning over streaming data and the problem of robustly managing streaming data and its refinement. The main contributions of this thesis are (1) a logic-based spatio-temporal reasoning technique that combines temporal reasoning with qualitative spatial reasoning; (2) an adaptive reconfiguration procedure for generating and maintaining a data stream required to perform spatio-temporal stream reasoning over; and (3) integration of these two techniques into a stream reasoning framework. The proposed spatio-temporal stream reasoning technique is able to reason with intertemporal spatial relations by leveraging landmarks. Adaptive state stream generation allows the framework to adapt in situations in which the set of available streaming resources changes. Management of streaming resources is formalised in the DyKnow model, which introduces a configuration life-cycle to adaptively generate state streams. The DyKnow-ROS stream reasoning framework is a concrete realisation of this model that extends the Robot Operating System (ROS). DyKnow-ROS has been deployed on the SoftBank Robotics NAO platform to demonstrate the system's capabilities in the context of a case study on run-time adaptive reconfiguration. The results show that the proposed system-by combining reasoning over and reasoning about streams-can robustly perform spatio-temporal stream reasoning, even when the availability of streaming resources changes.
Stream reasoning can be defined as incremental reasoning over incrementally-available information. The formula progression procedure for Metric Temporal Logic (MTL) makes use of syntactic formula rewritings to incrementally evaluate formulas against incrementally-available states. Progression however assumes complete state information, which can be problematic when not all state information is available or can be observed, such as in qualitative spatial reasoning tasks or in robotics applications. In those cases, there may be uncertainty as to which state out of a set of possible states represents the ‘true’ state. The main contribution of this paper is therefore an extension of the progression procedure that efficiently keeps track of all consistent hypotheses. The resulting procedure is flexible, allowing a trade-off between faster but approximate and slower but precise progression under uncertainty. The proposed approach is empirically evaluated by considering the time and space requirements, as well as the impact of permitting varying degrees of uncertainty.
Deze twee delen zijn geïntegreerd in een raamwerk voor robuust automa sch redeneren met onzekere informa estromen. Het raamwerk ondersteunt het redeneren met informa e in de vorm van stromen, en het redeneren over die stromen zelf als product van een syntheseproces. Deze vermogens worden belangrijker naar mate er meer informa estromen gegenereerd worden in onze digitale wereld.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.