Background Engineered stone silicosis is an emerging disease in many countries worldwide produced by the inhalation of respirable dust of engineered stone. This silicosis has a high incidence among young workers, with a short latency period and greater aggressiveness than silicosis caused by natural materials. Although the silica content is very high and this is the key factor, it has been postulated that other constituents in engineered stones can influence the aggressiveness of the disease. Different samples of engineered stone countertops (fabricated by workers during the years prior to their diagnoses), as well as seven lung samples from exposed patients, were analyzed by multiple techniques. Results The different countertops were composed of SiO2 in percentages between 87.9 and 99.6%, with variable relationships of quartz and cristobalite depending on the sample. The most abundant metals were Al, Na, Fe, Ca and Ti. The most frequent volatile organic compounds were styrene, toluene and m-xylene, and among the polycyclic aromatic hydrocarbons, phenanthrene and naphthalene were detected in all samples. Patients were all males, between 26 and 46 years-old (average age: 36) at the moment of the diagnosis. They were exposed to the engineered stone an average time of 14 years. At diagnosis, only one patient had progressive massive fibrosis. After a follow-up period of 8 ± 3 years, four patients presented progressive massive fibrosis. Samples obtained from lung biopsies most frequently showed well or ill-defined nodules, composed of histiocytic cells and fibroblasts without central hyalinization. All tissue samples showed high proportion of Si and Al at the center of the nodules, becoming sparser at the periphery. Al to Si content ratios turned out to be higher than 1 in two of the studied cases. Correlation between Si and Al was very high (r = 0.93). Conclusion Some of the volatile organic compounds, polycyclic aromatic hydrocarbons and metals detected in the studied countertop samples have been described as causative of lung inflammation and respiratory disease. Among inorganic constituents, aluminum has been a relevant component within the silicotic nodule, reaching atomic concentrations even higher than silicon in some cases. Such concentrations, both for silicon and aluminum showed a decreasing tendency from the center of the nodule towards its frontier.
BackgroundPleural fluid homocysteine (HCY) can be useful for diagnosis of malignant pleural effusion (MPE). There are no published studies comparing the diagnostic accuracy of HCY with other tumour markers in pleural fluid for diagnosis of MPE. The aim was to compare the accuracy of HCY with that of carcinoembryonic antigen (CEA), cancer antigen (CA) 15.3, CA19.9 and CA125 in pleural fluid and to develop a probabilistic model using these biomarkers to differentiate benign (BPE) from MPE.MethodsPatients with pleural effusion were randomly included. HCY, CEA, CA15.3, CEA19.9 and CA125 were quantified in pleural fluid. Patients were classified into two groups: MPE or BPE. By applying logistic regression analysis, a multivariate probabilistic model was developed using pleural fluid biomarkers. The diagnostic accuracy was determined by receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC).ResultsPopulation of study comprised 133 patients (72 males and 61 females) aged between 1 and 96 years (median = 70 years), 81 BPE and 52 MPE. The logistic regression analysis included HCY (p<0.0001) and CEA (p = 0.0022) in the probabilistic model and excluded the other tumour markers. The probabilistic model was: HCY+CEA = Probability(%) = 100×(1+e-z)-1, where Z = 0.5471×[HCY]+0.3846×[CEA]–8.2671. The AUCs were 0.606, 0.703, 0.778, 0.800, 0.846 and 0.948 for CA125, CA19.9, CEA, CA15.3, HCY and HCY+CEA, respectively.ConclusionsPleural fluid HCY has higher accuracy for diagnosis of MPE than CEA, CA15.3, CA19.9 and CA125. The combination of HCY and CEA concentrations in pleural fluid significantly improves the diagnostic accuracy of the test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.