CDCl 3 ) d 8.14±8.27 (m, 2 Ar±H, o to ±COOAr), 7.58±7.71 (m, 8 Ar±H, m to ±COOAr, m to ±CH 2 O±, m to ArCOO± and m to ±OOCAr), 7.25±7.32 (m, 4 Ar±H, o to ±CH 2 O± and o to ArCOO±), 6.96±7.04 (m, 4 Ar±H, o to ±OCH 2 (CH 2 ) 11 ± and o to ±OOCAr), 4.20 (t, 2H, ArOCH 2 CH 2 O±), 4.05 (t, 2 H, ArOCH 2 (CH 2 ) 10 ±, J=6.6 Hz), 3.54±4.00 (m, 68 H, ±CH 2 O±), 3.37 (s, 3 H, CH 3 O±), 1.77±1.85 (m, 2 H, ±CH 2 (CH 2 ) 9 ±), 1.14±1.47 (m, 18 H, ±CH 2 (CH 2 ) 9 ±), 0.87 (t, 3 H, CH 3 (CH 2 ) 11 ±, J=6.8
Commercial electrowetting-based liquid lenses are optical devices containing two immiscible liquids as an optical medium. The first phase is a droplet of a high refractive index oil phase placed in a ring-shaped chassis. The second phase is electrically conductive and has a similar density over a wide temperature range. Droplet curvature and refractive index difference of two liquids determine the optical strength of the lens. Liquid lenses take advantage of the electrowetting effect, which induces a change of the interface's curvature by applying a voltage, thereby providing a variable focal that is useful in autofocus applications. The first generation of lens modules were highly reliable, but the optical strength and application scope was limited by a low refractive index difference between the oil and conductive phase. Described herein is an effort to increase the refractive index difference between both phases, while maintaining other critical application characteristics of the liquids, including a low freezing point, viscosity, phase miscibility, and turbidity after thermal shock. An important challenge was the requirement that both phases have to have matching densities and hence had to be optimized simultaneously. Using high throughput experimentation in conjunction with statistical design of experiments (DOE), we have developed a series of empirical models to predict multiple physicochemical properties of both phases and derived ideal locations within the formulation space. This approach enabled the development of reliable liquid lenses with a previously unavailable refractive index difference of Δ n of ≥0.290, which enabled true optical zooming capability.
A novel, rapid, parallel, and high-throughput system for measuring viscosity of materials under different conditions of shear rate, temperature, time, etc., has been developed. This unique system utilizes the transient flow of a complex fluid through pipettes. This approach offers significant practical advantages over microfluidic-based devices for viscosity screening: no cleanup is required, the method is high throughput (<1 h for 100 samples), and only small sample volumes (<1 mL) are used. This paper details for the first time the experimental and modeling efforts to implement this mass- and pressure-based viscosity measurement concept as a robust viscosity estimation tool. This approach is very well-suited for viscosity measurements in high-throughput formulation workflows, as it is rapid and parallel and operates directly on samples in various microtiter plate formats. We present systematic experimental observations together with numerical and analytical modeling approaches to characterize instrument capabilities and limitations. The complex transient flow of fluids through these pipettes leads to data-rich pressure profiles. Numerical and analytical modeling is then used to extract viscosity and other rheological parameters from these pressure profiles. We have successfully utilized this viscosity screening tool for a multitude of complex fluids including oils, paints, solvents, and detergents.
A novel high-throughout (HTR) ion-exchange (IEX) resin workflow has been developed for characterizing ion exchange equilibrium of commercial and experimental IEX resins against a range of different applications where water environment differs from site to site. Because of its much higher throughput, design of experiment (DOE) methodology can be easily applied for studying the effects of multiple factors on resin performance. Two case studies will be presented to illustrate the efficacy of the combined HTR workflow and DOE method. In case study one, a series of anion exchange resins have been screened for selective removal of NO and NO in water environments consisting of multiple other anions, varied pH, and ionic strength. The response surface model (RSM) is developed to statistically correlate the resin performance with the water composition and predict the best resin candidate. In case study two, the same HTR workflow and DOE method have been applied for screening different cation exchange resins in terms of the selective removal of Mg, Ca, and Ba from high total dissolved salt (TDS) water. A master DOE model including all of the cation exchange resins is created to predict divalent cation removal by different IEX resins under specific conditions, from which the best resin candidates can be identified. The successful adoption of HTR workflow and DOE method for studying the ion exchange of IEX resins can significantly reduce the resources and time to address industry and application needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.