Web services run in complex contexts where arising events may compromise the quality of the whole system. Thus, it is desirable to count on autonomic mechanisms to guide the self-adaptation of service compositions according to changes in the computing infrastructure. One way to achieve this goal is by implementing variability constructs at the language level. However, this approach may become tedious, difficult to manage, and error-prone. In this paper, we propose a solution based on a semantically rich variability model to support the dynamic adaptation of service compositions. When a problematic event arises in the context, this model is leveraged for decision-making. The activation and deactivation of features in the variability model result in changes in a composition model that abstracts the underlying service composition. These changes are reflected into the service composition by adding or removing fragments of Business Process Execution Language (WS-BPEL) code, which can be deployed at runtime. In order to reach optimum adaptations, the variability model and its possible configurations are verified at design time using Constraint Programming. An evaluation demonstrates several benefits of our approach, both at design time and at runtime.
International audienceWe propose a generic, domain-independent local search method called adaptive search for solving Constraint Satisfaction Problems (CSP). We design a new heuristics that takes advantage of the structure of the problem in terms of constraints and variables and can guide the search more precisely than a global cost function to optimize (such as for instance the number of violated constraints). We also use an adaptive memory in the spirit of Tabu Search in order to prevent stagnation in local minima and loops. This method is generic, can apply to a large class of constraints (e.g. linear and non-linear arithmetic constraints, symbolic constraints, etc) and naturally copes with over-constrained problems. Preliminary results on some classical CSP problems show very encouraging performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.