CD82 is a widely expressed member of the tetraspanin family of transmembrane proteins known to control cell signaling, adhesion, and migration. Tetraspanin CD82 is induced over 9-fold during osteoclast differentiation in vitro; however, its role in bone homeostasis is unknown. A globally deleted CD82 mouse model was used to assess the bone phenotype. Based on microCT and 4-point bending tests, CD82-deficient bones are smaller in diameter and weaker, but display no changes in bone density. Histomorphometry shows a decrease in size, erosion perimeter, and number of osteoclasts in situ, with a corresponding increase in trabecular surface area, specifically in male mice. Male-specific alterations are observed in trabecular structure by microCT and in vitro differentiated osteoclasts are morphologically abnormal. Histomorphometry did not reveal a significant reduction in osteoblast number; however, dynamic labeling reveals a significant decrease in bone growth. Consistent with defects in OB function, OB differentiation and mineralization are defective in vitro, whereas adipogenesis is enhanced. There is a corresponding increase in bone marrow adipocytes in situ. Thus, combined defects in both osteoclasts and osteoblasts can account for the observed bone phenotypes, and suggests a role for CD82 in both bone mesenchyme and myeloid cells.
We used a myeloid-specific Cre to conditionally delete CD82 in mouse osteoclasts and their precursors. In contrast to global loss of CD82 (gKO), conditional loss of CD82 (cKO) in osteoclasts does not affect cortical bone, osteoblasts, or adipocytes. CD82 loss results in greater trabecular volume and trabecular number but reduced trabecular space in 6-month old male mice. Though this trend is present in females it did not reach significance; whereas there was an increase in osteoclast numbers and eroded surface area only in female cKO mice. In vitro, there is an increase in osteoclast fusion and defects in actin assembly in both gKO and cKO mice, irrespective of sex. This is accompanied by altered osteoclast morphology and decreased release of CTX in vitro. Integrin αvβ3 expression is reduced, while integrin β1 is increased. Signaling to Src, Syk, and Vav are also compromised. We further discovered that expression of Clec2 and its ligand, Podoplanin, molecules that also signal to Syk and Vav, are increased in differentiated osteoclasts. Loss of CD82 reduces their expression. Thus, CD82 is required for correct assembly of the cytoskeleton and to limit osteoclast fusion, both needed for normal osteoclast function.
We previously observed that genomic loss of galectin‐3 (Gal‐3; encoded by
Lgals3
) in mice has a significant protective effect on age‐related bone loss. Gal‐3 has both intracellular and extracellular functionality, and we wanted to assess whether the affect we observed in the
Lgals3
knockout (KO) mice could be attributed to the ability of Gal‐3 to bind glycoproteins. Mutation of a highly conserved arginine to a serine in human Gal‐3 (
LGALS3
‐R186S) blocks glycan binding and secretion. We generated mice with the equivalent mutation (
Lgals3
‐R200S) and observed a subsequent reduction in Gal‐3 secretion from mouse embryonic fibroblasts and in circulating blood. When examining bone structure in aged mice, we noticed some similarities to the
Lgals3
‐KO mice and some differences. First, we observed greater bone mass in
Lgals3
‐R200S mutant mice, as was previously observed in
Lgals3
‐KO mice. Like
Lgals3
‐KO mice, significantly increased trabecular bone mass was only observed in female
Lgals3
‐R200S mice. These results suggest that the greater bone mass observed is driven by the loss of extracellular Gal‐3 functionality. However, the results from our cortical bone expansion data showed a sex‐dependent difference, with only male
Lgals3
‐KO mice having an increased response, contrasting with our earlier study. These notable sex differences suggest a potential role for sex hormones, most likely androgen signaling, being involved. In summary, our results suggest that targeting extracellular Gal‐3 function may be a suitable treatment for age‐related loss of bone mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.