In this paper, we present a new method for removing texture in images using a smoothing rotating filter. From this filter, a bank of smoothed images provides pixel signals able to classify a pixel as a texture pixel, a homogenous region pixel or an edge pixel. Then, we introduce a new method for anisotropic diffusion which controls accurately the diffusion near edge and corner points and diffuses isotropically inside textured regions. Several results applied on real images and a comparison with anisotropic diffusion methods show that our model is able to remove the texture and control the diffusion.
In this paper we propose a new ridge/valley detection method in images based on the difference of rotating Gaussian semi filters. The novelty of this approach resides in the mixing of ideas coming both from directional filters and DoG method. We obtain a new ridge/valley anisotropic DoG detector enabling very precise detection of ridge/valley points. Moreover, this detector performs correctly at crest lines even if highly bended, and is precise on junctions. This detector has been tested successfully on various image types presenting difficult problems for classical ridges/valleys detection methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.