This paper explores the use of neural networks to reduce the computational cost of pricing and hedging variable annuity guarantees. Pricing these guarantees can take a considerable amount of time because of the large number of Monte Carlo simulations that are required for the fair value of these liabilities to converge. This computational requirement worsens when Greeks must be calculated to hedge the liabilities of these guarantees. A feedforward neural network is a universal function approximator that is proposed as a useful machine learning technique to interpolate between previously calculated values and avoid running a full simulation to obtain a value for the liabilities. We propose methodologies utilizing neural networks for both the tasks of pricing as well as hedging four different varieties of variable annuity guarantees. We demonstrated a significant efficiency gain using neural networks in this manner. We also experimented with different error functions in the training of the neural networks and examined the resulting changes in network performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.