Garson, D.E., Gaines, R.R., Droser, M.L., Liddell, W.D. & Sappenfield, A. 2011: Dynamic palaeoredox and exceptional preservation in the Cambrian Spence Shale of Utah. Lethaia, Vol. 45, pp. 164–177. Burgess Shale‐type faunas provide a unique glimpse into the diversification of metazoan life during the Cambrian. Although anoxia has long been thought to be a pre‐requisite for this particular type of soft‐bodied preservation, the palaeoenvironmental conditions that regulated extraordinary preservation have not been fully constrained. In particular, the necessity of bottom water anoxia, long considered a pre‐requisite, has been the subject of recent debate. In this study, we apply a micro‐stratigraphical, ichnological approach to determine bottom water oxygen conditions under, which Burgess Shale‐type biotas were preserved in the Middle Cambrian Spence Shale of Utah. Mudstones of the Spence Shale are characterized by fine scale (mm‐cm) alternation between laminated and bioturbated intervals, suggesting high‐frequency fluctuations in bottom water oxygenation. Whilst background oxygen levels were not high enough to support continuous infaunal activity, brief intervals of improved bottom water oxygen conditions punctuate the succession. A diverse skeletonized benthic fauna, including various polymerid trilobites, hyolithids, brachiopods and ctenocystoids suggests that complex dysoxic benthic community was established during times when bottom water oxygen conditions were permissive. Burgess Shale‐type preservation within the Spence Shale is largely confined to non‐bioturbated horizons, suggesting that benthic anoxia prevailed in intervals, where these fossils were preserved. However, some soft‐bodied fossils are found within weakly to moderately bioturbated intervals (Ichnofabric Index 2 and 3). This suggests that Burgess Shale‐type preservation is strongly favoured by bottom water anoxia, but may not require it in all cases. □Anoxia, Burgess Shale, Burgess Shale type‐preservation, Langston Formation, Spence Shale Member, Utah.
Burgess Shale−type biotas occur globally in the Cambrian record and offer unparalleled insight into the Cambrian explosion, the initial Phanerozoic radiation of the Metazoa. Deposits bearing exceptionally preserved soft-bodied fossils are unusually common in Cambrian strata; more than 40 are now known. The well-documented decline of soft-bodied preservation following the Middle Cambrian represents the closure of a taphonomic window that was only intermittently open in marine environments thereafter. The prevailing hypothesis for this secular shift in taphonomic conditions of outer shelf environments is that soft-bodied biotas were literally burrowed away from the fossil record by increasing infaunal activity in muddy substrate environments; this would have affected geochemical gradients and increased the effi ciency of organic matter recycling in sediments. New and recently published data, however, suggest a more complex sce- nario. Ichnologic and microstratigraphic data from Burgess Shale− type deposits indicate that (1) bioturbation exerts a limiting effect on soft-bodied preservation; (2) the observed increase in the depth and extent of bioturbation following the Middle Cambrian would have restricted preservation of Burgess Shale−type biotas in a number of settings; but (3) increasing depth and extent of bioturbation wouldnot have affected preservation in many other settings, including the most richly fossiliferous portions of the Chengjiang (China) deposit and the Greater Phyllopod Bed of the Burgess Shale (Canada). Therefore, increasing bioturbation cannot account for the apparent loss of this pathway from the fossil record, and requires that other circumstances, including, but not limited to, widespread benthic anoxia, facilitated widespread exceptional preservation in the Cambrian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.