Debris-laden ice accretes to the base of Matanuska Glacier, Alaska, U.S.A., from water that supercools while flowing in a distributed drainage system tip the adverse slope of an overdeepening. Frazil ice grows in the water column and forms aggregates, while other ice grows on the glacier sole or on substrate materials. Sediment is trapped by this growing ice, forming stratified debris-laden basal ice. Growth rates of >0.l ma−1of debris-rich basal ice are possible. The large sediment fluxes that this mechanism allows may have implications for interpretation of the widespread deposits from ice that flowed through other overdeepenings, including Heinrich events and the till sheets south of the Laurentian Great Lakes.
Glaciers often erode, transport and deposit sediment much more rapidly than nonglacial environments, with implications for the evolution of glaciated mountain belts and their associated sedimentary basins. But modelling such glacial processes is difficult, partly because stabilizing feedbacks similar to those operating in rivers have not been identified for glacial landscapes. Here we combine new and existing data of glacier morphology and the processes governing glacier evolution from diverse settings to reveal such stabilizing feedbacks. We find that the long profiles of beds of highly erosive glaciers tend towards steady-state angles opposed to and slightly more than 50 per cent steeper than the overlying ice-air surface slopes, and that additional subglacial deepening must be enabled by non-glacial processes. Climatic or glaciological perturbations of the ice-air surface slope can have large transient effects on glaciofluvial sediment flux and apparent glacial erosion rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.