Key points It is unknown whether excessive reactive oxygen species (ROS) production drives the isocapnic hyperoxia (IH)‐induced decline in human cerebral blood flow (CBF) via reduced nitric oxide (NO) bioavailability and leads to disruption of the blood–brain barrier (BBB) or neural‐parenchymal damage. Cerebral metabolic rate for oxygen (CMRnormalO2) and transcerebral exchanges of NO end‐products, oxidants, antioxidants and neural‐parenchymal damage markers were simultaneously quantified under IH with intravenous saline and ascorbic acid infusion. CBF and CMR normalO2 were reduced during IH, responses that were followed by increased oxidative stress and reduced NO bioavailability when saline was infused. No indication of neural‐parenchymal damage or disruption of the BBB was observed during IH. Antioxidant defences were increased during ascorbic acid infusion, while CBF, CMR normalO2, oxidant and NO bioavailability markers remained unchanged. ROS play a role in the regulation of CBF and metabolism during IH without evidence of BBB disruption or neural‐parenchymal damage. Abstract To test the hypothesis that isocapnic hyperoxia (IH) affects cerebral blood flow (CBF) and metabolism through exaggerated reactive oxygen species (ROS) production, reduced nitric oxide (NO) bioavailability, disturbances in the blood–brain barrier (BBB) and neural‐parenchymal homeostasis, 10 men (24 ± 1 years) were exposed to a 10 min IH trial (100% O2) while receiving intravenous saline and ascorbic acid (AA, 3 g) infusion. Internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF) and total CBF (tCBF, Doppler ultrasound) were determined. Arterial and right internal jugular venous blood was sampled to quantify the cerebral metabolic rate of oxygen (CMRnormalO2), transcerebral exchanges (TCE) of NO end‐products (plasma nitrite), antioxidants (AA and AA plus dehydroascorbic acid (AA+DA)) and oxidant biomarkers (thiobarbituric acid‐reactive substances (TBARS) and 8‐isoprostane), and an index of BBB disruption and neuronal‐parenchymal damage (neuron‐specific enolase; NSE). IH reduced ICABF, tCBF and CMR normalO2, while VABF remained unchanged. Arterial 8‐isoprostane and nitrite TCE increased, indicating that CBF decline was related to ROS production and reduced NO bioavailability. AA, AA+DA and NSE TCE did not change during IH. AA infusion did not change the resting haemodynamic and metabolic parameters but raised antioxidant defences, as indicated by increased AA/AA+DA concentrations. Negative AA+DA TCE, unchanged nitrite, reductions in arterial and venous 8‐isoprostane, and TBARS TCE indicated that AA infusion effectively inhibited ROS production and preserved NO bioavailability. Similarly, AA infusion prevented IH‐induced decline in regional and total CBF and re‐established CMR normalO2. These findings indicate that ROS play a role in CBF regulation and metabolism during IH without evidence of BBB disruption or neural‐parenchymal damage.
The present study investigated whether hypertension impairs isocapnic hypoxia (IH)-induced cerebral and skeletal muscle hyperaemia to an extent that limits oxygen supply. Oxygen saturation (oxymetry), mean arterial pressure (photoplethysmography) and muscle sympathetic nerve activity (MSNA; microneugraphy), as well as femoral artery (FA), internal carotid artery and vertebral artery (VA) blood flow (BF; Doppler ultrasound), were quantified in nine normotensive (NT) (aged 40 ± 11 years, systolic pressure 119 ± 7 mmHg and diastolic pressure 73 ± 6 mmHg) and nine hypertensive men (HT) (aged 44 ± 12 years, systolic pressure 152 ± 11 mmHg and diastolic pressure 90 ± 9 mmHg) during 5 min of normoxia (21% O ) and IH (10% O ). Total cerebral blood flow (tCBF), brain (CDO ) and leg (LDO ) oxygen delivery were estimated. IH provoked similar oxygen desaturation without changing mean arterial pressure. Internal carotid artery perfusion increased in both groups during IH. However, VA and FA BF only increased in NT. Thus, IH-induced increase in tCBF was smaller in HT. CDO only increased in NT and LDO decreased in HT. Furthermore, IH evoked a greater increase in HT MSNA. Changes in MSNA were inversely related to FA BF, LDO and end-tidal oxygen tension. In conclusion, hypertension disturbs regional and total cerebrovascular and peripheral responses to IH and consequently limits oxygen supply to the brain and skeletal muscle. Although increased chemoreflex-induced sympathetic activation may explain impaired peripheral perfusion, attenuated vasodilatory signalling in the posterior cerebrovasculature appears to be responsible for the small increase in tCBF when HT were exposed to IH.
Peripheral venous distension mechanically stimulates type III/IV sensory fibers in veins and evokes pressor and sympathoexcitatory reflex responses in humans. As young females have reduced venous compliance, smaller increases in arterial pressure to type III/IV sensory fibers activation and impaired sympathetic transduction, we tested the hypothesis that pressor and sympathoexcitatory responses to venous distension may be attenuated in women compared to men. Mean arterial pressure (MAP, photoplethysmography), heart rate (HR), stroke volume (SV, Modelflow), cardiac output (CO = HR x SV), muscle sympathetic nerve activity (MSNA), femoral artery blood flow and conductance (FABF and FACT, Doppler ultrasound) were quantified in 8 males (27 ± 4 yrs.) and 9 females (28 ± 4 yrs.) before (CON) during (INF) and after (Post‐INF) a local infusion of normal saline (5% of the forearm volume) through a retrograde catheter inserted into an antecubital vein of the forearm, to which venous drainage and arterial supply had been occluded. MAP increased during and after infusion in both groups (vs. CON, p ≤ 0.05) but women showed a smaller pressor response in the Post‐INF period (Δ+7.2 ± 2.0 vs. men Δ+18.3 ± 3.9 mmHg, p = 0.019). MSNA increased and FACT decreased similarly in both groups (vs. CON, p ≤ 0.05) at Post‐INF. While HR changes were similar, increases in SV (Δ+20.4 ± 8.6 vs. Δ+2.6 ± 2.7 mL, p = 0.05) and CO (Δ+0.84 ± 0.17 vs. Δ+0.34 ± 0.10 L/min, p = 0.024) were greater in men than women. Therefore, these findings indicate that venous distension evokes a smaller pressor response in young women due to attenuated cardiac adjustments rather than to reduced venous compliance or sympathetic transduction. Support or Funding Information Support: CNPq, CAPES, FAPERJ This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
Isocapnic hyperoxia (IH) evokes cerebral and peripheral hypoperfusion via both disturbance of redox homeostasis and reduction in nitric oxide (NO) bioavailability. However, it is not clear whether the magnitude of the vasomotor responses depends on the vessel network exposed to IH. To test the hypothesis that the magnitude of IH-induced reduction in peripheral blood flow (BF) may differ from the hypoperfusion response observed in the cerebral vascular network under oxygen-enriched conditions, nine healthy men (25 ± 3 yr, mean ± SD) underwent 10 min of IH during either saline or vitamin C (3 g) infusion, separately. Femoral artery (FA), internal carotid artery (ICA), and vertebral artery (VA) BF (Doppler ultrasound), as well as arterial oxidant (8-isoprostane), antioxidant [ascorbic acid (AA)], and NO bioavailability (nitrite) markers were simultaneously measured. IH increased 8-isoprostane levels and reduced nitrite levels; these responses were followed by a reduction in both FA BF and ICA BF, whereas VA BF did not change. Absolute and relative reductions in FA BF were greater than IH-induced changes in ICA and VA perfusion. Vitamin C infusion increased arterial AA levels and abolished the IH-induced increase in 8-isoprostane levels and reduction in nitrite levels. Whereas ICA and VA BF did not change during the vitamin C-IH trial, FA perfusion increased and reached similar levels to those observed during normoxia with saline infusion. Therefore, the magnitude of IH-induced reduction in femoral blood flow is greater than that observed in the vessel network of the brain, which might involve the determinant contribution that NO has in the regulation of peripheral vascular perfusion.
In animals, the blockade of acid-sensing ion channels (ASICs), cation pore-forming membrane proteins located in the free nerve endings of group IV afferent fibers, attenuates increases in arterial pressure (AP) and sympathetic nerve activity (SNA) during muscle contraction. Therefore, ASICs play a role in mediating the metabolic component (skeletal muscle metaboreflex) of the exercise pressor reflex in animal models. Here we tested the hypothesis that ASICs also play a role in evoking the skeletal muscle metaboreflex in humans, quantifying beat-by-beat mean AP (MAP; finger photoplethysmography) and muscle SNA (MSNA; microneurography) in 11 men at rest and during static handgrip exercise (SHG; 35% of the maximal voluntary contraction) and postexercise muscle ischemia (PEMI) before (B) and after (A) local venous infusion of either saline or amiloride (AM), an ASIC antagonist, via the Bier block technique. MAP (BAM +30 ± 6 vs. AAM +25 ± 7 mmHg, P = 0.001) and MSNA (BAM +14 ± 9 vs. AAM +10 ± 6 bursts/min, P = 0.004) responses to SHG were attenuated under ASIC blockade. Amiloride also attenuated the PEMI-induced increases in MAP (BAM +25 ± 6 vs. AAM +16 ± 6 mmHg, P = 0.0001) and MSNA (BAM +16 ± 9 vs. AAM +8 ± 8 bursts/min, P = 0.0001). MAP and MSNA responses to SHG and PEMI were similar before and after saline infusion. We conclude that ASICs play a role in evoking pressor and sympathetic responses to SHG and the isolated activation of the skeletal muscle metaboreflex in humans. NEW & NOTEWORTHY We showed that regional blockade of the acid-sensing ion channels (ASICs), induced by venous infusion of the antagonist amiloride via the Bier block anesthetic technique, attenuated increases in arterial pressure and muscle sympathetic nerve activity during both static handgrip exercise and postexercise muscle ischemia. These findings indicate that ASICs contribute to both pressor and sympathetic responses to the activation of the skeletal muscle metaboreflex in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.