Muscle eye brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD) are congenital muscular dystrophies with associated, similar brain malformations. The FCMD gene, fukutin, shares some homology with fringe-like glycosyltransferases, and the MEB gene, POMGnT1, seems to be a new glycosyltransferase. Here we show, in both MEB and FCMD patients, that alpha-dystroglycan is expressed at the muscle membrane, but similar hypoglycosylation in the diseases directly abolishes binding activity of dystroglycan for the ligands laminin, neurexin and agrin. We show that this post-translational biochemical and functional disruption of alpha-dystroglycan is recapitulated in the muscle and central nervous system of mutant myodystrophy (myd) mice. We demonstrate that myd mice have abnormal neuronal migration in cerebral cortex, cerebellum and hippocampus, and show disruption of the basal lamina. In addition, myd mice reveal that dystroglycan targets proteins to functional sites in brain through its interactions with extracellular matrix proteins. These results suggest that at least three distinct mammalian genes function within a convergent post-translational processing pathway during the biosynthesis of dystroglycan, and that abnormal dystroglycan-ligand interactions underlie the pathogenic mechanism of muscular dystrophy with brain abnormalities.
Fukuyama congenital muscular dystrophy (FCMD), muscle-eye-brain disease (MEB), and Walker-Warburg syndrome are congenital muscular dystrophies (CMDs) with associated developmental brain defects. Mutations reported in genes of FCMD and MEB patients suggest that the genes may be involved in protein glycosylation. Dystroglycan is a highly glycosylated component of the muscle dystrophin-glycoprotein complex that is also expressed in brain, where its function is unknown. Here we show that brain-selective deletion of dystroglycan in mice is sufficient to cause CMD-like brain malformations, including disarray of cerebral cortical layering, fusion of cerebral hemispheres and cerebellar folia, and aberrant migration of granule cells. Dystroglycan-null brain loses its high-affinity binding to the extracellular matrix protein laminin, and shows discontinuities in the pial surface basal lamina (glia limitans) that probably underlie the neuronal migration errors. Furthermore, mutant mice have severely blunted hippocampal long-term potentiation with electrophysiologic characterization indicating that dystroglycan might have a postsynaptic role in learning and memory. Our data strongly support the hypothesis that defects in dystroglycan are central to the pathogenesis of structural and functional brain abnormalities seen in CMD.
Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy. Heart failure is the second leading cause of fatalities in DMD. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease. Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.