Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure.
When protein/peptides aggregate, they usually form the amyloid state consisting of cross β-sheet structure built by repetitively stacked β-strands forming long fibrils. Amyloids are usually associated with disease including Alzheimer's. However, amyloid has many useful features. It efficiently transforms protein from the soluble to the insoluble state in an essentially two-state process, while its repetitive structure provides high stability and a robust prion-like replication mechanism. Accordingly, amyloid is used by nature in multifaceted and ingenious ways of life, ranging from bacteria and fungi to mammals. These include (1) Structure: Templating for small chemical molecules (Pmel17), biofilm formation in bacteria (curli), assisting aerial hyphae formation in streptomycetes (chaplins) or monolayer formation at a surface (hydrophobins). (2) Reservoirs: A storage state for peptide/proteins to protect them from their surroundings or vice versa (storage of peptide hormones in mammalian secretory granules or major basic protein in eosinophils). (3) Information carriers: The fungal immune system (HET-s prion in Podospora anserina, yeast prions) or long-term memory (e.g., mnemons in yeast, cytoplasmic polyadenylation element-binding protein in aplysia). Aggregation is also used to (4) "suppress" the function of the soluble protein (e.g., Cdc19 in yeast stress granules), or (5) "signaling" through formation of oligomers (e.g., HET-s prion, necroptosis-related proteins RIP1/RIP3). This review summarizes current knowledge on functional amyloids with a focus on the amyloid systems curli in bacteria, HET-s prion in P. anserina, and peptide hormone storage in mammals together with an attempt to highlight differences between functional and disease-associated amyloids.
The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness.
Die Fibrillenstruktur, die das amyloidogene Fragment SNNFGAILSS des menschlichen Insel‐Amyloid‐Polypeptids (hIAPP) bildet, wurde mit einer Auflösung von 0.52 Å bestimmt. Aus den Festkörper‐NMR‐Spektren einfach erhältliche Symmetrieinformationen (siehe Bild) können zusammen mit langreichweitigen Randbedingungen genutzt werden, um die supramolekulare Organisation von Fibrillen eindeutig zu identifizieren.magnified image
Functional amyloid fibers, called curli, play a critical role in adhesion and invasion of many bacteria. Unlike pathological amyloids, curli structures are formed by polypeptide sequences whose amyloid structure has been selected for during evolution. This important distinction provides us with an opportunity to obtain structural insights from an unexpected source: the covariation of amino acids in sequences of different curli proteins. We used recently developed methods to extract amino acid contacts from a multiple sequence alignment of homologues of the curli subunit protein, CsgA. Together with an efficient force field, these contacts allow us to determine structural models of CsgA. We find that CsgA forms a β-helical structure, where each turn corresponds to previously identified repeat sequences in CsgA. The proposed structure is validated by previously measured solid-state NMR, electron microscopy, and X-ray diffraction data and agrees with an earlier proposed model derived by complementary means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.