Acoustic cloaking has received significant interest due to the appealing ability to render an object acoustically invisible. In a similar concept to acoustic cloaking, acoustic illusions provide the capability to misrepresent the acoustic field of an object. Combining acoustic cloaking and illusions with numerical discretization methods allow objects of greater complexity to be considered. This work presents active acoustic cloaking and illusions of three-dimensional rigid objects. The boundary element method is utilized to efficiently predict the exterior acoustic domain. A multi-input/multi-output control system comprising monopole control sources, error sensors, and a controller based on a feedforward linear-quadratic regulator algorithm is employed. Active acoustic cloaking of a simple object corresponding to a sphere is demonstrated for both non-decaying and decaying incident fields. For the same control configuration but minimizing a cost function based on different error signals, acoustic illusions are generated to mimic the presence of a sphere within a free field. Illusional fields are also generated for a cube and a bird to misrepresent their size or orientation.
Acoustic cloaking has mostly been considered within a stationary fluid. The authors herein show that accounting for the effects of convection in the presence of fluid flow is critical for cloaking in the acoustic domain. This work presents active acoustic cloaking in a convected flow field for two different incident fields, corresponding to a plane wave and a single monopole source, impinging on a rigid body. Monopole control sources circumferentially arranged around the rigid body are used to generate a secondary acoustic field to destructively interfere with the primary scattered field arising from the incident excitation cases. The authors show that for sound waves in a moving fluid, active cloaking can only be achieved using a convected cloak, which is dependent on Mach number. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.