In den vergangenen 15 Jahren lag im deutschen Bauwesen ein Forschungsschwerpunkt auf dem Verbundmaterial Textilbeton. 2011 endete die Finanzierung der durch die Deutsche Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereiche an der TU Dresden (SFB 528) und an der RWTH Aachen (SFB 532). Im Zuge dieser Forschungsarbeiten entstanden bereits erste Pilotbauwerke, die das hohe Potenzial von Textilbeton demonstrieren. Besonders im Bereich filigraner Neubauteile und der Verstärkung bestehender Tragwerke konnten mit dünnen Schichten aus Textilbeton unter Ausnutzung seiner hohen Zugtragfähigkeit Ansätze für eine wirtschaftliche Alternative zu konventionellen Bauweisen aufgezeigt werden. Um die Verbundwerkstoffe für ein breites Anwendungsfeld nutzbar zu machen, lag der Fokus in den vergangenen Jahren auf der anwendungsorientierten Forschung in Zusammenarbeit mit Firmen der Bauwirtschaft. So sind beispielsweise im Bereich der Fassadenelemente kleinformatige Platten aus Textilbeton heute bereits Stand der Technik. Auch für Brückenkonstruktionen, Tragwerksverstärkungen und großformatige Bauteile wie Balkonbodenplatten oder tragende Schalenkonstruktionen konnte die hohe Leistungsfähigkeit von Textilbeton ausgenutzt werden.Textile concrete – an overview of executed projectsIn Germany, a research focus was on the composite material textile reinforced concrete (TRC) in the last 15 years. In 2011 two Collaborative Research Centres (SFBs), SFB 528 at the TU Dresden and the SFB 532 at the RWTH Aachen, funded by the Deutsche Forschungsgemeinschaft (DFG) were successfully completed. Within the research projects, pilot buildings have already been developed to demonstrate the high potential of textile reinforced concrete. Particularly in the field of strengthening of existing structures and thin walled new components, thin constructions with a high tensile bearing capacity provide a cost‐effective alternative to conventional construction methods. With the aim of applying the material in a wide range of fields, numerous different research projects were realised in collaboration with companies from the construction industry in the last years. For instance small‐sized slabs made of textile reinforced concrete are already the state‐of‐the‐art in the field of facade panels. Furthermore, the high effectiveness of textile reinforced concrete could be shown for the strengthening of existing structures, bridge constructions and large‐sized components such as balcony floor slabs or bearing shell structures.
Im Rahmen experimenteller Untersuchungen wurden Stahlbetonplatten hergestellt, mit verschiedenen textilen Bewehrungen verstärkt, durch Belastung bis 125% Gebrauchslast vorgeschädigt und anschließend unter Gebrauchslast mit einer Brandbelastung nach der Einheitstemperaturkurve (ISO‐834, Cellulosic curve) beaufschlagt. Alle Platten hielten der Brandbelastung bei gleichzeitiger Biegebeanspruchung mehr als 60 Minuten stand und zeigten weder Betonabplatzungen noch andere optische Schädigungen auf. Die für dieses überraschend positive Ergebnis verantwortlichen Mechanismen werden diskutiert, sind aber noch nicht vollständig verstanden. Eine Schlüsselrolle spielt dabei vermutlich das gute Rissverhalten von Textilbeton und interne Lastumlagerungen zwischen Textil‐ und Stahlbewehrung. Textile Reinforced Concrete Strengthened Slabs under Fire Loading Within an experimental study steel reinforced concrete slabs were produced and strengthened with different types of textile reinforcements. They were than pre‐damaged with 125% service load and subsequently exposed to fire loading (ISO‐834, Cellulosic curve) under simultaneous service load. The tests lasted up to 60 minutes with no specimen failed. The slabs did not show any visual damage nor concrete spalling. We discuss the presumably reasons for that surprisingly positive test result, although mechanisms are not yet fully understood. The excellent crack control of TRC and load redistribution between textile and steel reinforcement as well as load redistribution in the slabs are assumedly key mechanisms that contribute to the excellent fire resistance.
<p>Carbon reinforced concrete — a combination of non-corroding carbon reinforcement and concrete — has been investigated for over 20 years and has been used extensively in construction practice for more than 10 years for new constructions and for renovation. Wall and ceiling constructions in building construction as well as bridges and platform systems were newly erected, but also roofs, silos and bridges were renovated. During its manufacturing process but also during its time of use, carbon reinforced concrete can be affected by temperature stresses. The paper starts with an overview of how the temperature characteristics at different temperatures are to be evaluated. Furthermore, it will be shown how mat-like carbon reinforcement with its electrical conductivity and the high specific electrical resistance of approx. 16 Ω-mm²/m can be used for the deliberate heating of carbon concrete components. In addition, carbon reinforcement can be used to achieve thermal prestressing of fresh concrete components similar to prestressed glass panes.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.