The use of floating-point calculations limits the accuracy of solutions obtained by standard LP software. We present a simplex-based algorithm that returns exact rational solutions, taking advantage of the speed of floating-point calculations and attempting to minimize the operations performed in rational arithmetic. Extensive computational results are presented.
For the purpose of production scheduling, open-pit mines are discretized into three-dimensional arrays known as block models. Production scheduling consists of deciding which blocks should be extracted, when they should be extracted, and what to do with the blocks once they are extracted. Blocks that are close to the surface should be extracted first, and capacity constraints limit the production in each time period. Since the 1960s, it has been known that this problem can be cast as an integer programming model. However, the large size of some real instances (3-10 million blocks, 15-20 time periods) has made these models impractical for use in real planning applications, thus leading to the use of numerous heuristic methods. In this article we study a well-known integer programming formulation of the problem that we refer to as C-PIT. We propose a new decomposition method for solving the linear programming relaxation (LP) of C-PIT when there is a single capacity constraint per time period. This algorithm is based on exploiting the structure of the precedenceconstrained knapsack problem and runs in O mn log n in which n is the number of blocks and m a function of the precedence relationships in the mine. Our computations show that we can solve, in minutes, the LP relaxation of real-sized mine-planning applications with up to five million blocks and 20 time periods. Combining this with a quick rounding algorithm based on topological sorting, we obtain integer feasible solutions to the more general problem where multiple capacity constraints per time period are considered. Our implementation obtains solutions within 6% of optimality in seconds. A second heuristic step, based on local search, allows us to find solutions within 3% in one hour on all instances considered. For most instances, we obtain solutions within 1-2% of optimality if we let this heuristic run longer. Previous methods have been able to tackle only instances with up to 150,000 blocks and 15 time periods.
Similar to the mixed-integer programming library (MIPLIB), we present a library of publicly available test problem instances for three classical types of open pit mining problems: the ultimate pit limit problem and two variants of open pit production scheduling problems. The ultimate pit limit problem determines a set of notional three-dimensional blocks containing ore and/or waste material to extract to maximize value subject to geospatial precedence constraints. Open pit production scheduling problems seek to determine when, if ever, a block is extracted from an open pit mine. A typical objective is to maximize the net present value of the extracted ore; constraints include precedence and upper bounds on operational resource usage. Extensions of this problem can include (i) lower bounds on operational resource usage, (ii) the determination of whether a block is sent to a waste dump, i.e., discarded, or to a processing plant, i.e., to a facility that derives salable mineral from the block, (iii) average grade constraints at the processing plant, and (iv) inventories of extracted but unprocessed material. Although open pit mining problems have appeared in academic literature dating back to the 1960s, no standard representations exist, and there are no commonly available corresponding data sets. We describe some representative open pit mining problems, briefly mention related literature, and provide a library consisting of mathematical models and sets of instances, available on the Internet. We conclude with directions for use of this newly established mining library. The library serves not only as a suggestion of standard expressions of and available data for open pit mining problems, but also as encouragement for the development of increasingly sophisticated algorithms.
a b s t r a c tWe describe a computer code and data that together certify the optimality of a solution to the 85,900-city traveling salesman problem pla85900, the largest instance in the TSPLIB collection of challenge problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.