Virtual machine placement is the process of mapping virtual machines to available physical hosts within a datacenter or on a remote datacenter in a cloud federation. Normally, service owners cannot influence the placement of service components beyond choosing datacenter provider and deployment zone at that provider. For some services, however, this lack of influence is a hindrance to cloud adoption. For example, services that require specific geographical deployment (due e.g. to legislation), or require redundancy by avoiding co-location placement of critical components. We present an approach for service owners to influence placement of their service components by explicitly specifying service structure, component relationships, and placement constraints between components. We show how the structure and constraints can be expressed and subsequently formulated as constraints that can be used in placement of virtual machines in the cloud. We use an integer linear programming scheduling approach to illustrate the approach, show the corresponding mathematical formulation of the model, and evaluate it using a large set of simulated input. Our experimental evaluation confirms the feasibility of the model and shows how varying amounts of placement constraints and data center background load affects the possibility for a solver to find a solution satisfying all constraints within a certain timeframe. Our experiments indicate that the number of constraints affects the ability of finding a solution to a higher degree than background load, and that for a high number of hosts with low capacity, component affinity is the dominating factor affecting the possibility to find a solution.
We extend cloud application contextualization, i.e. the dynamic configuration of a VM upon initialization, to leverage the full potential of cloud hosting by introducing the idea of recontextualization. We present a runtime cloud recontextualization mechanism to allow VM images and instances to be dynamically re-configured without restarts or downtime. The mechanism is applicable to all aspects of configuring a VM from virtual hardware to multi-tier software stacks, without the need to customize the guest VM. We present our work via a use case: the reconfiguration of a cross-cloud migratable monitoring service in a dynamic cloud environment. We discuss the details of the interoperable recontextualization mechanism, its architecture and demonstrate a proof of concept implementation through a performance evaluation. The results of this evaluation show that the solution performs adequately with an overhead of 18% of the total migration time, illustrating the feasibility of the solution.
New VM instances are created from static templates that contain the basic configuration of the VM to achieve elasticity with regards to capacity. Instance specific settings can be injected into the VM during the deployment phase through means of contextualization. So far this is limited to a single data source and data remains static throughout the lifecycle of the VM. We present a layered approach to contextualization that supports different classes of contextualization data available from several sources. The settings are made available to the VM through virtual devices. Inside each VM data from different classes are layered on top of each other to create a unified file hierarchy. Context data can be modified during runtime by updating the contents of the virtual devices, making our approach the first contextualization approach to natively support recontextualization. Recontextualization enables runtime reconfiguration of an executing service and can act as a trigger and key enabler of self-* techniques. This trigger provides a service with a mechanism to adapt or optimize itself in response to a changing environment. The runtime reconfiguration using recontextualization and its potential gains are illustrated in an example with a distributed file system, demonstrating the feasibility of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.