Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone that facilitates the maturation of a wide range of proteins (known as clients). Clients are enriched in signal transducers, including kinases and transcription factors. Therefore, HSP90 regulates diverse cellular functions and exerts marked effects on normal biology, disease and evolutionary processes. Recent structural and functional analyses have provided new insights on the transcriptional and biochemical regulation of HSP90 and the structural dynamics it uses to act on a diverse client repertoire. Comprehensive understanding of how HSP90 functions promises not only to provide new avenues for therapeutic intervention, but to shed light on fundamental biological questions.
Translesion synthesis (TLS) by Y-family DNA polymerases is a chief mechanism of DNA damage tolerance. Such TLS can be accurate or error-prone, as it is for bypass of a cyclobutane pyrimidine dimer by DNA polymerase eta (XP-V or Rad30) or bypass of a (6-4) TT photoproduct by DNA polymerase V (UmuD'2C), respectively. Although DinB is the only Y-family DNA polymerase conserved among all domains of life, the biological rationale for this striking conservation has remained enigmatic. Here we report that the Escherichia coli dinB gene is required for resistance to some DNA-damaging agents that form adducts at the N2-position of deoxyguanosine (dG). We show that DinB (DNA polymerase IV) catalyses accurate TLS over one such N2-dG adduct (N2-furfuryl-dG), and that DinB and its mammalian orthologue, DNA polymerase kappa, insert deoxycytidine (dC) opposite N2-furfuryl-dG with 10-15-fold greater catalytic proficiency than opposite undamaged dG. We also show that mutating a single amino acid, the 'steric gate' residue of DinB (Phe13 --> Val) and that of its archaeal homologue Dbh (Phe12 --> Ala), separates the abilities of these enzymes to perform TLS over N2-dG adducts from their abilities to replicate an undamaged template. We propose that DinB and its orthologues are specialized to catalyse relatively accurate TLS over some N2-dG adducts that are ubiquitous in nature, that lesion bypass occurs more efficiently than synthesis on undamaged DNA, and that this specificity may be achieved at least in part through a lesion-induced conformational change.
SUMMARY The self-templating conformations of yeast prion proteins act as epigenetic elements of inheritance. Yeast prions might provide a mechanism for generating heritable phenotypic diversity that promotes survival in fluctuating environments and the evolution of new traits. However, this hypothesis is highly controversial. Prions that create new traits have not been found in wild strains, leading to the perception that they are rare “diseases” of laboratory cultivation. Here we biochemically test ~700 wild strains of Saccharomyces for [PSI+] or [MOT3+], and find these prions in many. They conferred diverse phenotypes that were frequently beneficial under selective conditions. Simple meiotic re-assortment of the variation harboured within a strain readily fixed one such trait, making it robust and prion-independent. Finally, we genetically screened for unknown prion elements. Fully one third of wild strains harboured them. These, too, created diverse, often beneficial phenotypes. Thus, prions broadly govern heritable traits in nature, in a manner that could profoundly expand adaptive opportunities.
How can species remain unaltered for long periods yet also undergo rapid diversification? By linking genetic variation to phenotypic variation via environmental stress, the Hsp90 protein-folding reservoir might promote both stasis and change. However, the nature and adaptive value of Hsp90-contingent traits remain uncertain. In ecologically and genetically diverse yeasts, we find such traits to be both common and frequently adaptive. Most are based on preexisting variation, with causative polymorphisms occurring in coding and regulatory sequences alike. A common temperature stress alters phenotypes similarly. Both selective inhibition of Hsp90 and temperature stress increase correlations between genotype and phenotype. This system broadly determines the adaptive value of standing genetic variation and, in so doing, has influenced the evolution of current genomes.
In the process of morphological evolution, the extent to which cryptic, preexisting variation provides a substrate for natural selection has been controversial. We provide evidence that HSP90 phenotypically masks standing eye size variation in surface populations of the cavefish Astyanax mexicanus. This variation is exposed by HSP90 inhibition, and can be selected for, ultimately yielding a reduced-eye phenotype even in the presence of full HSP90 activity. Raising surface fish under conditions found in caves taxes the HSP90 system, unmasking the same phenotypic variation as direct inhibition of HSP90. These results suggest that cryptic variation played a role in the evolution of eye loss in cavefish and provide the first evidence for HSP90 as a capacitor for morphological evolution in a natural setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.