The thickness and refractive index of 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) monolayers Langmuir--Blodgett (LB) deposited on mica were measured in dry air and bulk water using multiple-beam interferometry (MBI). Measurements of thickness using atomic force microscopy (AFM) of identical monolayers, and X-ray reflectivity (XRR) of the monolayers on quartz were taken for comparison. The measurement of the properties of solid-supported monolayers in dry air allows lipid optical properties to be determined free from solvent effects. The thickness and refractive index measured by MBI were 25.5 ± 0.6 Å and 1.485 ± 0.007 for DPPE monolayers, and 23.9 ± 0.5 Å and 1.478 ± 0.006 for DPPC monolayers in dry air. These thicknesses are consistent with the other techniques used in this work as well as other measurements in the literature. The refractive indices of solid-supported lipid monolayers have not been previously measured. The values are higher than previous measurements on black lipid films done by reflectometry, which is attributed to increased lipid packing density and the absence of hydrocarbon solvents. Applying water to the monolayers had no measurable effect on their properties, indicating that any change in hydration was below detection.
Despite their widespread use in biocatalysis, the marginal stability of lipases can significantly limit their catalytic performance in industrial biotransformations. Here, we demonstrate that this limitation can be overcome by immobilization on poly(sulfobetaine methacrylate) (PSBMA) polymer brushes. Specifically, the immobilization of Bacillus subtilis lipase A (lipA) on PSBMA brushes resulted in a 100-fold enhancement in turnover frequency relative to ambient conditions at the temperature optimum of the immobilized enzyme, which was also improved by immobilization. This significant enhancement in catalytic performance was due to the structural stabilization of lipA as well as changes in lipA conformational dynamics as measured using single-molecule Förster resonance energy transfer. Interestingly, the enhancement in catalytic performance of lipases depended strongly on the chemistry of the brush. These findings demonstrate that tuning the brush chemistry can lead to marked improvements in the catalytic efficiency of immobilized lipases, which may have major ramifications in industrial biocatalysis.
The successful incorporation of enzymes into materials through multipoint covalent immobilization (MPCI) has served as the foundation for numerous advances in diverse fields, including biocatalysis, biosensing, and chemical weapons defense. Despite this success, a mechanistic understanding of the impact of this approach on enzyme stability has remained elusive, which is critical for realizing the full potential of MPCI. Here, we showed that the stabilization of lipase upon MPCI to polymer brush surfaces resulted from the rigidification of the enzyme with an increase in the number of enzyme-brush attachments. This was evident by a 10-fold decrease in the rates of enzyme unfolding and refolding as well as a reduction of the intrinsic fluctuations of the folded and unfolded states, which was measured by single-molecule (SM) Förster Resonance Energy Transfer imaging. Moreover, our results illuminate an important trade-off between stability and activity as a function of this decrease in structural dynamics of the immobilized lipase. Notably, as the thermal stability of lipase increased, as indicated by the temperature optimum for activity of the enzyme, the specific activity of lipase decreased. This decrease in activity was attributed to a reduction in the essential motions of the folded state that are required for catalytic turnover of substrate. These results provide direct evidence of this effect, which has long been a matter of speculation. Furthermore, our findings suggest that the retention of activity and stabilization of an enzyme may be balanced by tuning the extent of enzyme attachment.
Many nanobiotechnology applications rely on stable and efficient integration of functional biomacromolecules with synthetic nanomaterials. Unfortunately, the reasons for the ubiquitous loss of activity of immobilized enzymes remain poorly understood due to the difficulty in distinguishing between distinct molecular-level mechanisms. Here, we employ complementary single-molecule fluorescence methods that independently measure the impact of immobilization on the structure and function ( i. e., substrate binding kinetics) of nitroreductase (NfsB). Stochastic statistical modeling methods were used to unambiguously quantify the effects of immobilized NfsB structural dynamics on function, allowing us to explicitly separate effects due to conformation and accessibility. Interestingly, we found that nonspecifically tethered NfsB exhibited enhanced stability compared to site-specifically tethered NfsB; however, the folded state of site-specifically tethered NfsB had faster substrate binding rates, suggesting improved active site accessibility. This demonstrated an unexpected intrinsic trade-off associated with competing bioconjugation methods, suggesting that it may be necessary to balance conformational stability versus active site accessibility. This nuanced view of the impact of immobilization will facilitate a rational approach to the integration of enzymes with synthetic nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.