Tumor necrosis factor-␣ (TNF) is initially expressed as a 26-kDa membrane-bound precusor protein (pro-TNF) that is shed proteolytically from the cell surface, releasing soluble 17-kDa TNF. We have identified human ADAM 10 (HuAD10) from THP-1 membrane extracts as a metalloprotease that specifically clips a peptide substrate spanning the authentic cleavage site between Ala 76 and Val 77 in pro-TNF. To confirm that HuAD10 has TNF processing activity, we cloned, expressed, and purified an active, truncated form of HuAD10. Characterization of recombinant HuAD10 (rHuAD10) suggests that this enzyme has many of the properties (i.e. substrate specificity, metalloprotease activity, cellular location) expected for a physiologically relevant TNF-processing enzyme. Tumor necrosis factor-␣ (TNF)1 is a cytokine that is produced primarily by activated monocytes and macrophages in response to a variety of physiological stresses such as infection or injury (1). Clinical and experimental evidence has also identified TNF as a mediator of chronic autoimmune diseases such as rheumatoid arthritis (2) and Crohn's disease (3), as well as being involved in the pathology associated with sepsis (1). Accordingly, TNF has become a primary target for therapeutic intervention of several inflammatory diseases.TNF is initially synthesized as a 26-kDa membrane-bound protein (pro-TNF) that is subsequently cleaved to release soluble 17-kDa TNF with an NH 2 terminus of Val 77 (4). The identity of the protease(s) responsible for TNF processing remains controversial. Robache-Gallea et al. (5) detected a serine protease activity (PR3) in monocyte membrane preparations which was able to generate a 17-kDa active TNF with an NH 2 terminus of Arg 78 . In 1994, the partial isolation and characterization of a membrane-bound activity capable of generating the 17-kDa form of TNF were reported (6). The TNF-processing enzyme was thought to be a non-matrix metalloprotease since it was not inhibited by TIMP-1,2 or phosphoramidon, and no calcium requirement was detected. More recently, two members of the ADAM family (TNF-␣ converting enzyme (TACE) and bovine ADAM 10 (BoAD10)) have been shown to possess pro-TNF processing activity (7-9).In this report we describe the isolation, cloning, and characterization of a TNF-processing enzyme from the human monocytic cell line THP-1. The purified recombinant enzyme, rHuAD10, specifically recognizes the authentic cleavage site in pro-TNF and is sensitive to metalloprotease inhibitors that block soluble TNF production (6). MATERIALS AND METHODSReagents-Dinitrophenol-labeled polypeptides were synthesized by the Fmoc (N-(9-fluorenyl)methoxycarbonyl)/t-butyl-based solid phase peptide chemistry method using an Applied Biosystems, Inc. 431A peptide synthesizer (10). All peptides were purified by reversed phase HPLC, and molecular weights were verified by mass spectrometry.HPLC Peptide Assay-TNF processing activity was measured as the ability to cleave a 12-residue peptide spanning the Ala 76 -Val 77 site in pro-TNF. The chromatopho...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/) application was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target while remaining amenable to variable degrees of protein characterization, in the context of available information about the chemical/protein interaction and the molecular target itself. To accommodate this flexibility in the analysis, 3 levels of evaluation were developed. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of orthologs); the second level evaluates sequence similarity within selected functional domains (eg, ligand-binding domain); and the third level of analysis compares individual amino acid residue positions of importance for protein conformation and/or interaction with the chemical upon binding. Each level of the SeqAPASS analysis provides additional evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further evaluation, selection of appropriate species for testing, extrapolation of empirical toxicity data, and/or assessment of the cross-species relevance of adverse outcome pathways. Three case studies are described herein to demonstrate application of the SeqAPASS tool: the first 2 focused on predictions of pollinator susceptibility to molt-accelerating compounds and neonicotinoid insecticides, and the third on evaluation of cross-species susceptibility to strobilurin fungicides. These analyses illustrate challenges in species extrapolation and demonstrate the broad utility of SeqAPASS for risk-based decision making and research.
Background: Oligomers of amyloid- peptides are implicated in the etiology of Alzheimer disease. Results: Specific "off-pathway" oligomers of A42 show unique replication properties upon interacting with monomers. Conclusion:The results indicate that oligomers that are formed along pathways outside the fibril formation pathway may undergo replication. Significance: Mechanistic details of A soluble oligomers will enable better understanding of Alzheimer disease pathology.
Most diagnostic tests for primary aldosteronism use maneuvers to expand the extracellular fluid volume, thereby suppressing the renin-angiotensin system. This results in a decline in plasma aldosterone concentrations in normal subjects and essential hypertension (EH) patients, but not in patients with primary aldosteronism. Captopril blocks angiotensin II synthesis and might be used as a diagnostic test for primary aldosteronism. We have measured plasma aldosterone concentrations 2 h after the administration of 25 mg captopril in 9 normotensive subjects, 10 patients with EH, and 12 patients with primary aldosteronism while they were ingesting an unrestricted diet. The plasma aldosterone concentration decreased to less than 15 ng/dl in all normotensive subjects and in 9 of 10 patients with EH, but remained greater than 15 ng/dl in 4 of 5 patients with idiopathic hyperaldosteronism and in all patients with an aldosterone-producing adenoma. The aldosterone to renin ratio was greater than 50 in 4 of 5 patients with idiopathic hyperaldosteronism and in all adenoma patients, but less than 50 in all normotensive subjects and EH patients. A nomogram comparing the plasma aldosterone concentration with the aldosterone to renin ratio clearly separated primary aldosteronism patients from EH patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.