In this paper, we develop algorithms to independently draw from a family of conjugate posterior distributions over the structural parameterization when sign and zero restrictions are used to identify structural vector autoregressions (SVARs). We call this family of conjugate posteriors normal‐generalized‐normal. Our algorithms draw from a conjugate uniform‐normal‐inverse‐Wishart posterior over the orthogonal reduced‐form parameterization and transform the draws into the structural parameterization; this transformation induces a normal‐generalized‐normal posterior over the structural parameterization. The uniform‐normal‐inverse‐Wishart posterior over the orthogonal reduced‐form parameterization has been prominent after the work of Uhlig (2005). We use Beaudry, Nam, and Wang's (2011) work on the relevance of optimism shocks to show the dangers of using alternative approaches to implementing sign and zero restrictions to identify SVARs like the penalty function approach. In particular, we analytically show that the penalty function approach adds restrictions to the ones described in the identification scheme.
Structural vector autoregressions (SVARs) are widely used for policy analysis and to provide stylized facts for dynamic stochastic general equilibrium (DSGE) models; yet no workable rank conditions to ascertain whether an SVAR is globally identified have been established. Moreover, when nonlinear identifying restrictions are used, no efficient algorithms exist for small-sample estimation and inference. This paper makes four contributions towards filling these important gaps in the literature. First, we establish general rank conditions for global identification of both identified and exactly identified models. These rank conditions are sufficient for general identification and are necessary and sufficient for exact identification. Second, we show that these conditions can be easily implemented and that they apply to a wide class of identifying restrictions, including linear and certain nonlinear restrictions. Third, we show that the rank condition for exactly identified models amounts to a straightforward counting exercise. Fourth, we develop efficient algorithms for small-sample estimation and inference, especially for SVARs with nonlinear restrictions. Copyright © 2009 Federal Reserve Bank of Atlanta. Journal compilation © 2009 The Review of Economic Studies Limited.
a b s t r a c tInference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely to appear in smaller models. Our framework allows for many regimes in the transition matrix, without letting the number of free parameters grow as the square as the number of regimes, but also without losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains why existing methods are unreliable. It makes suggestions for maximizing posterior density and initiating MCMC simulations that provide robustness against the complex likelihood shape.
Provided in Cooperation withAbstract: We develop a new method for deriving minimal state variable (MSV) equilibria of a general class of Markov-switching rational expectations models and a new algorithm for computing these equilibria. We compare our approach to previously known algorithms, and we demonstrate that ours is both efficient and more reliable than previous methods in the sense that it is able to find MSV equilibria that previously known algorithms cannot. Further, our algorithm can find all possible MSV equilibria in models where there are multiple MSV equilibria. This feature is essential if one is interested in using a likelihood-based approach to estimation. JEL classification: C61, C62
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract:In the existing literature, conditional forecasts in the vector autoregressive (VAR) framework have not been commonly presented with probability distributions or error bands. This paper develops Bayesian methods for computing such distributions or bands. It broadens the class of conditional forecasts to which the methods can be applied. The methods work for both structural and reduced-form VAR models and, in contrast to common practices, account for the parameter uncertainty in small samples. Empirical examples under the flat prior and under the reference prior of Sims and Zha (1998) are provided to show the use of these methods.JEL classification: C32, E17, C53
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.