In this paper, the focus is on the gain and phase calibration of sparse sensor arrays to localize more sources than the number of physical sensors. The proposed technique is a blind calibration method as it does not require any calibrator sources. Joint estimation of the gain errors, phase errors, and source directions is a complicated non-convex optimization problem, which is transformed into a convex optimization problem by exploiting the underlying algebraic structure. It is shown that the developed solver is suitable for analog as well as one-bit measurements. Numerical experiments based on sparse rulers are provided to illustrate the developed theory.
In this paper, we present a calibration algorithm for acoustic vector sensors arranged in a uniform linear array configuration. To do so, we do not use a calibrator source, instead we leverage the Toeplitz blocks present in the data covariance matrix. We develop linear estimators for estimating sensor gains and phases. Further, we discuss the differences of the presented blind calibration approach for acoustic vector sensor arrays in comparison with the approach for acoustic pressure sensor arrays. In order to validate the proposed blind calibration algorithm, simulation results for direction-of-arrival (DOA) estimation with an uncalibrated and calibrated uniform linear array based on minimum variance distortion less response and multiple signal classification algorithms are presented. The calibration performance is analyzed using the Cramér-Rao lower bound of the DOA estimates.
Sound localization problems are usually tackled by the acquisition of data from phased microphone arrays and the application of acoustic holography or beamforming algorithms. However, the number of sensors required to achieve reliable results is often prohibitive, particularly if the frequency range of interest is wide. It is shown that the number of sensors required can be reduced dramatically providing the sound field is time stationary. The use of scanning techniques such as "Scan & Paint" allows for the gathering of data across a sound field in a fast and efficient way, using a single sensor and webcam only. It is also possible to characterize the relative phase field by including an additional static microphone during the acquisition process. This paper presents the theoretical and experimental basis of the proposed method to localise sound sources using only one fixed microphone and one moving acoustic sensor. The accuracy and resolution of the method have been proven to be comparable to large microphone arrays, thus constituting the so called "virtual phased arrays".
Sound visualization techniques have played a key role in the development of acoustics throughout history. The development of measurement apparatus and techniques for displaying sound and vibration phenomena has provided excellent tools for building understanding about specific problems. Traditional methods, such as step-by-step measurements or simultaneous multichannel systems, have a strong tradeoff between time requirements, flexibility, and cost. However, if the sound field can be assumed time stationary, scanning methods allow us to assess variations across space with a single transducer, as long as the position of the sensor is known. The proposed technique, Scan and Paint, is based on the acquisition of sound pressure and particle velocity by manually moving a P-U probe (pressure-particle velocity sensors) across a sound field whilst filming the event with a camera. The sensor position is extracted by applying automatic color tracking to each frame of the recorded video. It is then possible to visualize sound variations across the space in terms of sound pressure, particle velocity, or acoustic intensity. In this paper, not only the theoretical foundations of the method, but also its practical applications are explored such as scanning transfer path analysis, source radiation characterization, operational deflection shapes, virtual phased arrays, material characterization, and acoustic intensity vector field mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.