Cellular uptake of microcystins (MCs), a family of cyclic cyanobacterial heptapeptide toxins, occurs via specific organic anion transporting polypeptides (OATPs), where MCs inhibit serine/threonine-specific protein phosphatase (PP). Despite comparable PP-inhibitory capacity, MCs differ greatly in their acute toxicity, thus raising the question whether this discrepancy results from MC-specific toxikokinetic rather than toxicodynamic differences. OATP-mediated uptake of MC congeners MCLR, -RR, -LW and -LF was compared in primary human hepatocytes and HEK293 cells stably expressing recombinant human OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3 in the presence/absence of OATP substrates taurocholate (TC) and bromosulfophthalein (BSP) and measuring PP-inhibition and cytotoxicity. Control vector expressing HEK293 were resistant to MC cytotoxicity, while TC and BSP competition experiments reduced MC cytotoxicity in HEK293-OATP transfectants, thus confirming the requirement of OATPs for trans-membrane transport. Despite comparable PP-inhibiting capabilities, MCLW and -LF elicited cytotoxic effects at lower equimolar concentrations than MCLR and MCRR, hence suggesting congener selective transport into HEK293-OATP transfectants and primary human hepatocytes. Primary human hepatocytes appeared one order of magnitude more sensitive to MC congeners than the corresponding HEK293 -OATP transfectants. Although the latter maybe due to a much lower level of PPs in primary human hepatocytes, the presence of OATPs other than 1B1 or 1B3 may have added to an increased uptake of MCs. In view of the high sensitivity of human hepatocytes and currently MCLR-only based risk calculations, the actual risk of human MC-intoxication and ensuing liver damage could be underestimated in freshwater cyanobacterial blooms where MCLW and-LF predominate.
Microcystins (MCs) are naturally occurring cyclic heptapeptides that exhibit hepato-, nephro- and possibly neurotoxic effects in mammals. Organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for active uptake of MCs into hepatocytes and kidney epithelial cells. Based on symptoms of neurotoxicity in MC-intoxicated patients and the presence of Oatp/OATP at the blood-brain-barrier (BBB) and blood-cerebrospinal-fluid-barrier (BCFB) it is hypothesized that MCs can be transported across the BBB/BCFB in an Oatp/OATP-dependent manner and can induce toxicity in brain cells via inhibition of protein phosphatase (PP). To test these hypotheses, the presence of murine Oatp (mOatp) in primary murine whole brain cells (mWBC) was investigated at the mRNA and protein level. MC transport was tested by exposing mWBCs to three different MC-congeners (MC-LR, -LW, -LF) with/without co-incubation with the OATP/Oatp-substrates taurocholate (TC) and bromosulfophthalein (BSP). Uptake of MCs and cytotoxicity was demonstrated via MC-Western blot analysis, immunocytochemistry, cell viability and PP inhibition assays. All MC congeners bound covalently and inhibited mWBC PP. MC-LF was the most cytotoxic congener followed by -LW and -LR. The lowest toxin concentration significantly reducing mWBC viability after 48 h exposure was 400 nM (MC-LF). Uptake of MCs into mWBCs was inhibited via co-incubation with excess TC (50 and 500 microM) and BSP (50 microM). MC-Western blot analysis demonstrated a concentration-dependent accumulation of MCs. In conclusion, the in vitro data support the assumed MC-congener-dependent uptake in a mOatp-associated manner and cytotoxicity of MCs in primary murine whole brain cells.
Cyanobacterial microcystins (MCs) represent a toxin group with > 100 variants, requiring active uptake into cells via organic anion-transporting polypeptides, in order to irreversibly inhibit serine/threonine-specific protein phosphatases. MCs are a human health hazard with repeated occurrences of severe poisonings. In the well-known human MC intoxication in Caruaru, Brazil (1996), patients developed signs of acute neurotoxicity, e.g., deafness, tinnitus, and intermittent blindness, as well as subsequent hepatotoxicity. The latter data, in conjunction with some animal studies, suggest that MCs are potent neurotoxins. However, there is little data to date demonstrating MC neuron-specific toxicity. MC exposure-induced cytotoxicity, caspase activity, chromatin condensation, and microtubule-associated Tau protein hyperphosphorylation (epitopes serine199/202 and serine396) were determined. Neurite degeneration was analyzed with confocal microscopy and neurite length determined using image analysis. MC-induced apoptosis was significantly increased by MC-LF and MC-LW, however, only at high concentrations (≥ 3μM), whereas significant neurite degeneration was already observed at 0.5μM MC-LF. Moreover, sustained hyperphosphorylation of Tau was observed with all MC congeners. The concentration- and congener-dependent mechanisms observed suggest that low concentrations of MC-LF and MC-LW can induce subtle neurodegenerative effects, reminiscent of Alzheimer's disease type human tauopathies, and thus should be taken more seriously with regard to potential human health effects than the apical cytotoxicity (apoptosis or necrosis) demonstrated at high MC concentrations.
BackgroundContamination of natural waters by toxic cyanobacteria is a growing problem worldwide, resulting in serious water pollution and human health hazards. Microcystins (MCs) represent a group of > 80 cyclic heptapeptides, mediating cytotoxicity via specific protein phosphatase (PP) inhibition at equimolar concentrations (comparable toxicodynamics). Because of the structure and size of MCs, active uptake into cells occurs via organic anion-transporting polypeptides (OATP/Oatp), as confirmed for liver-specific human OATP1B1 and OATP1B3, mouse Oatp1b2 (mOatp1b2), skate Oatp1d1, and the more widely distributed OATP1A2 expressed, for example, at the blood–brain barrier. Tissue-specific and cell-type–specific expression of OATP/Oatp transporters and specific transport of MC congeners (toxicokinetics) therefore appear prerequisite for the reported toxic effects in humans and other species upon MC exposure. Beyond hepatotoxicity induced by the MC-LR congener, the effects of other MC congeners, especially neuronal uptake and toxicity, are unknown.ObjectivesIn this study we examined the expression of mOatps and the uptake of congeners MC-LR, MC-LW, and MC-LF in primary murine neurons.MethodsIntracellular MC accumulation was indicated indirectly via uptake inhibition experiments and directly confirmed by Western blot analysis and a PP inhibition assay. Neuronal mOatp expression was verified at the mRNA and protein level.ResultsMCs can cross neuronal cell membranes, with a subsequent decrease of PP activity. Of 15 mOatps, 12 were expressed at the mRNA level, but we found detectable protein levels for only two: mOatp1a5 (Slco1a5) and the known MC-LR transporter mOatp1b2 (Slco1b2).ConclusionsThese data suggest mOatp-mediated uptake of MC congeners into neurons, thus corroborating earlier assumptions of the neurotoxic potential of MCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.