The estimation of the uncertainty associated with stage-discharge relations is a challenge to the hydrologists. Bayesian inference with likelihood estimator is a promissory approach. The choice of the likelihood function has an important impact on the capability of the model to represent the residues. This paper aims evaluate two likelihood functions with DREAM algorithm to estimate specific non-unique stage-discharge rating curves: normal likelihood function and Laplace likelihood function. The result of BaRatin is also discussed. The MCMC of the DREAM and the BaRatin algorithm have been compared and its results seem consistent for the studied case. The Laplace likelihood function presented as good results as normal likelihood function for the residues. Other gauging stations should be evaluated to attend more general conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.