Abstract-Vertical test reuse refers to the the reuse of test cases or other test artifacts over different integration levels in the software or system engineering process. Vertical test reuse has previously been proposed for reducing test effort and improving test effectiveness, particularly for embedded system development. The goal of this study is to provide an overview of the state of the art in the field of vertical test reuse for embedded system development. For this purpose, a systematic mapping study has been performed, identifying 11 papers on vertical test reuse for embedded systems. The primary result from the mapping is a classification of published work on vertical test reuse in the embedded system domain, covering motivations for reuse, reuse techniques, test levels and reusable test artifacts considered, and to what extent the effects of reuse have been evaluated.
The importance of efficient software testing procedures is driven by an ever increasing system complexity as well as global competition. In the particular case of manual test cases at the system integration level, where thousands of test cases may be executed before release, time must be well spent in order to test the system as completely and as efficiently as possible. Automating a subset of the manual test cases, i.e, translating the manual instructions to automatically executable code, is one way of decreasing the test effort. It is further common that test cases exhibit similarities, which can be exploited through reuse when automating a test suite. In this paper, we investigate the potential for reducing test effort by ordering the test cases before such automation, given that we can reuse already automated parts of test cases. In our analysis, we investigate several approaches for prioritization in a case study at a large Swedish vehicular manufacturer. The study analyzes the effects with respect to test effort, on four projects with a total of 3919 integration test cases constituting 35,180 test steps, written in natural language. The results show that for the four projects considered, the difference in expected manual effort between the best and the worst order found is on average 12 percentage points. The results also show that our proposed prioritization method is nearly as good as more resource demanding meta-heuristic approaches Software Qual J at a fraction of the computational time. Based on our results, we conclude that the order of automation is important when the set of test cases contain similar steps (instructions) that cannot be removed, but are possible to reuse. More precisely, the order is important with respect to how quickly the manual test execution effort decreases for a set of test cases that are being automated.
Abstract. The use of software component models has become popular during the last decade, in particular in the development of software for desktop applications and distributed information systems. However, such models have not been widely used in the domain of embedded realtime systems. There is a considerable amount of research on component models for embedded real-time systems, or even narrower application domains, which focuses on source code components and statically configured systems. This paper explores an alternative approach by laying the groundwork for a component model based on binary components and targeting the broader domain of embedded real-time systems. The work is inspired by component models for the desktop and information systems domains in the sense that a basic component model is extended with a set of services for the targeted application domain. A prototype tool for supporting these services is presented and its use illustrated by a control application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.