Poisson's equation is the canonical elliptic partial differential equation. While there exist fast Poisson solvers for finite difference and finite element methods, fast Poisson solvers for spectral methods have remained elusive. Here, we derive spectral methods for solving Poisson's equation on a square, cylinder, solid sphere, and cube that have an optimal complexity (up to polylogarithmic terms) in terms of the degrees of freedom required to represent the solution. Whereas FFT-based fast Poisson solvers exploit structured eigenvectors of finite difference matrices, our solver exploits a separated spectra property that holds for our spectral discretizations. Without parallelization, we can solve Poisson's equation on a square with 100 million degrees of freedom in under two minutes on a standard laptop. Throughout this paper, "optimal complexity" means a computational complexity that is optimal up to polylogarithmic factors. 1
An efficient hp-multigrid scheme is presented for local discontinuous Galerkin (LDG) discretizations of elliptic problems, formulated around the idea of separately coarsening the underlying discrete gradient and divergence operators. We show that traditional multigrid coarsening of the primal formulation leads to poor and suboptimal multigrid performance, whereas coarsening of the flux formulation leads to optimal convergence and is equivalent to a purely geometric multigrid method. The resulting operator-coarsening schemes do not require the entire mesh hierarchy to be explicitly built, thereby obviating the need to compute quadrature rules, lifting operators, and other mesh-related quantities on coarse meshes. We show that good multigrid convergence rates are achieved in a variety of numerical tests on 2D and 3D uniform and adaptive Cartesian grids, as well as for curved domains using implicitly defined meshes and for multi-phase elliptic interface problems with complex geometry. Extension to non-LDG discretizations is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.