Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Therapeutic strategies using drugs which cause Lysosomal Cell Death have been proposed for eradication of resistant cancer cells. In this context, nanotherapy based on Magnetic Intra-Lysosomal Hyperthermia (MILH) generated by magnetic nanoparticles (MNPs) that are grafted with ligands of receptors overexpressed in tumors appears to be a very promising therapeutic option. However, mechanisms whereby MILH induces cell death are still elusive. Herein, using Gastrin-grafted MNPs specifically delivered to lysosomes of tumor cells from different cancers, we provide evidences that MILH causes cell death through a non-apoptotic signaling pathway. The mechanism of cell death involves a local temperature elevation at the nanoparticle periphery which enhances the production of reactive oxygen species through the lysosomal Fenton reaction. Subsequently, MILH induces lipid peroxidation, lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol, including Cathepsin-B which activates Caspase-1 but not apoptotic Caspase-3. These data highlight the clear potential of MILH for the eradication of tumors overexpressing receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.