Hand segmentation for hand-object interaction is a necessary preprocessing step in many applications such as augmented reality, medical application, and human-robot interaction. However, typical methods are based on color information which is not robust to objects with skin color, skin pigment difference, and light condition variations. Thus, we propose hand segmentation method for hand-object interaction using only a depth map. It is challenging because of the small depth difference between a hand and objects during an interaction. To overcome this challenge, we propose the two-stage random decision forest (RDF) method consisting of detecting hands and segmenting hands. To validate the proposed method, we demonstrate results on the publicly available dataset of hand segmentation for hand-object interaction. The proposed method achieves high accuracy in short processing time comparing to the other state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.