Intensive management practices are commonly used to increase fiber production from forests, but potential tradeoffs with maintenance of long-term productivity and early successional biodiversity have yet to be quantified. We assessed soil and vegetation responses in replicated manipulations of logging debris (LD; either retained or removed) and competing vegetation control (VC; either initial or sustained annually for 5 years) for 10 years at two Douglas-fir sites that contrasted strongly in availability of soil nutrients and water. We evaluated 1) survival and growth of Douglas-fir to determine short-term effectiveness for fiber production, 2) change in soil C and nutrient pools as an indicator of longer-term effects of treatments on soil quality and ecosystem production, and 3) vegetation composition and cover for treatment effects on early successional biodiversity. Annual VC caused large increases in Douglas-fir growth at both sites, but increased survival only at the lower-productivity site. In most instances and regardless of site or treatment, soil C and nutrient pools increased following harvesting, but the increases were generally larger with lower intensity practices (LD retained and initial VC). Effects of LD were small and inconsistent at the higher productivity site, but LD retained increased Douglas-fir survival and growth and soil nutrient pools at the lower productivity site. Species diversity was reduced at both sites with annual VC because of increased Douglas-fir cover, but the magnitude was greater and the timing was earlier at the higher quality site where plant communities in all treatments had converged by year 10. Annual VC can be used to increase growth of planted Douglas-fir while maintaining soil nutrient pools for sustained ecosystem productivity, but a concurrent decrease in early successional diversity will occur with impacts increasing with site quality. Logging debris retention can have positive benefits to Douglas-fir growth and soil nutrient pools, particularly at lower quality sites. Our results demonstrate a need for careful consideration of site quality to ensure that objectives are realized with regards to fiber production and maintenance of soil productivity and biodiversity with intensive forest management.
Effects of intensive forest management on soil phosphorus (P) are unclear and may impact long-term site productivity. We assessed changes in P availability over 10 years associated with harvest intensity (bole-only vs. whole-tree harvest) and vegetation control treatments (initial vegetation control (IVC) vs. five years of annual vegetation control (AVC)) using a P fractionation procedure. Fractions were characterized at 0-15, 15-30, and 30-60 cm soil depths in two coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) plantations with strongly contrasting soil properties near Matlock, WA (young soils formed in glacial outwash) and Molalla, OR (relatively old soils formed in igneous residuum and exhibiting andic properties). Al and Fe concentrations associated with short-range order minerals were greater at Molalla than Matlock and generally decreased with depth at both sites. We observed decreases in most total-P and P-fraction concentrations across the three soil depths at the Molalla site. Effects were less pronounced and generally inconsistent at the Matlock site. Decreases in total P and P fraction concentrations were greatest in the AVC treatments at Matlock, but opposite trends were observed at Molalla where decreases were greatest with IVC. There was no difference between harvest treatments on the change in P fractions in most instances, with the exception of the 30-60 cm depth at Matlock where concentrations of some P fractions were maintained or increased with bole-only harvesting. Ten-year responses indicate harvest intensity has limited effects on long-term productivity associated with soil P because of the large size of the soil P pools and the relatively small changes in soil P that occurred with treatment. Decreases in P concentrations with AVC at Matlock and IVC at Molalla were larger than the other treatments and highlight the important role of vegetation in P dynamics following harvesting at these sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.