Background Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness.Methods In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FindingsOf 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1•84, 95% CI 1•53-2•21), male sex (1•63, 1•07-2•48), smoking status (former smoker vs never smoked: 1•60, 1•03-2•47), number of comorbidities (two vs none: 4•50, 1•33-15•28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3•89, 2•11-7•18), active cancer (progressing vs remission: 5•20, 2•77-9•77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2•93, 1•79-4•79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0•24, 0•07-0•84) or the US-Midwest (0•50, 0•28-0•90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. Interpretation Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments.
Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.
Highlights d We build the genomic and transcriptomic landscape of 465 primary TNBCs d Chinese TNBC cases demonstrate more PIK3CA mutations and LAR subtype d Transcriptomic data classify TNBCs into four subtypes d Multi-omics profiling identifies potential targets within specific TNBC subtypes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.