Background Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness.Methods In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FindingsOf 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1•84, 95% CI 1•53-2•21), male sex (1•63, 1•07-2•48), smoking status (former smoker vs never smoked: 1•60, 1•03-2•47), number of comorbidities (two vs none: 4•50, 1•33-15•28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3•89, 2•11-7•18), active cancer (progressing vs remission: 5•20, 2•77-9•77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2•93, 1•79-4•79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0•24, 0•07-0•84) or the US-Midwest (0•50, 0•28-0•90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. Interpretation Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments.
Risk of venous thromboembolism (VTE)is elevated in cancer, but individual risk factors cannot identify a sufficiently highrisk group of outpatients for thromboprophylaxis. We developed a simple model for predicting chemotherapy-associated VTE using baseline clinical and laboratory variables. The association of VTE with multiple variables was characterized in a derivation cohort of 2701 cancer outpatients from a prospective observational study. A risk model was derived and validated in an independent cohort of 1365 patients from the same study. Five predictive variables were identified in a multivariate model: site of cancer (2 points for very high-risk site, 1 point for highrisk site), platelet count of 350 ؋ 10 9 /L or more, hemoglobin less than 100 g/L (10 g/dL) and/or use of erythropoiesisstimulating agents, leukocyte count more than 11 ؋ 10 9 /L, and body mass index of 35 kg/m 2 or more (1 point each). Rates of VTE in the derivation and validation cohorts, respectively, were 0.8% and 0.3% in low-risk (score ؍ 0), 1.8% and 2% in intermediate-risk (score ؍ 1-2), and 7.1% and 6.7% in high-risk (score > 3) category over a median of 2.5 months (Cstatistic ؍ 0.7 for both cohorts). This model can identify patients with a nearly 7% short-term risk of symptomatic VTE and may be used to select cancer outpatients for studies of thromboprophylaxis. IntroductionCancer and antineoplastic therapy are frequently complicated by the development of venous thromboembolism (VTE). Several risk factors for cancer-associated VTE have been described in recent studies and include primary site of cancer, presence of metastatic disease, and use of antineoplastic therapy including chemotherapy, hormonal therapy, surgery, and erythropoiesis-stimulating agents. [1][2][3][4] Cancer patients on active therapy are at greatest risk for development of VTE. In a population-based study, cancer was associated with a 4.1-fold greater risk of thrombosis, whereas the use of chemotherapy increased the risk 6.5-fold. 5,6 In women with stage II breast cancer, the risk of VTE decreases dramatically after chemotherapy is completed. 7,8 The occurrence of VTE has important implications for the cancer patient including requirement for chronic anticoagulation, possible delays in delivering chemotherapy, a high risk of recurrent VTE, risk of bleeding complications on anticoagulation, decreased quality of life, and consumption of health care resources. 9,10 Furthermore, cancer patients with VTE have a 2-fold or greater increase in mortality compared with cancer patients without VTE, even after adjusting for stage. 11,12 Indeed, thromboembolism is a leading cause of death in cancer patients. 13 Primary VTE prophylaxis can reduce deep vein thrombosis (DVT), pulmonary embolism (PE), and fatal PE in several highrisk populations such as hospitalized patients or in the postoperative setting. [14][15][16][17][18] In the cancer population, identification of patients most at risk for VTE followed by institution of effective prophylaxis could improve morbidity, m...
PURPOSE To provide updated recommendations about prophylaxis and treatment of venous thromboembolism (VTE) in patients with cancer. METHODS PubMed and the Cochrane Library were searched for randomized controlled trials (RCTs) and meta-analyses of RCTs published from August 1, 2014, through December 4, 2018. ASCO convened an Expert Panel to review the evidence and revise previous recommendations as needed. RESULTS The systematic review included 35 publications on VTE prophylaxis and treatment and 18 publications on VTE risk assessment. Two RCTs of direct oral anticoagulants (DOACs) for the treatment of VTE in patients with cancer reported that edoxaban and rivaroxaban are effective but are linked with a higher risk of bleeding compared with low-molecular-weight heparin (LMWH) in patients with GI and potentially genitourinary cancers. Two additional RCTs reported on DOACs for thromboprophylaxis in ambulatory patients with cancer at increased risk of VTE. RECOMMENDATIONS Changes to previous recommendations: Clinicians may offer thromboprophylaxis with apixaban, rivaroxaban, or LMWH to selected high-risk outpatients with cancer; rivaroxaban and edoxaban have been added as options for VTE treatment; patients with brain metastases are now addressed in the VTE treatment section; and the recommendation regarding long-term postoperative LMWH has been expanded. Re-affirmed recommendations: Most hospitalized patients with cancer and an acute medical condition require thromboprophylaxis throughout hospitalization. Thromboprophylaxis is not routinely recommended for all outpatients with cancer. Patients undergoing major cancer surgery should receive prophylaxis starting before surgery and continuing for at least 7 to 10 days. Patients with cancer should be periodically assessed for VTE risk, and oncology professionals should provide patient education about the signs and symptoms of VTE. Additional information is available at www.asco.org/supportive-care-guidelines .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.