When a stable memory is reactivated it becomes transiently labile and requires restabilization, a process known as reconsolidation. Animal studies have convincingly demonstrated that during reconsolidation memories are modifiable and can be erased when reactivation is followed by an interfering intervention. Few studies have been conducted in humans, however, and results are inconsistent regarding the extent to which a memory can be degraded. We used a motor sequence learning paradigm to show that the length of reactivation constitutes a crucial boundary condition determining whether human motor memories can be degraded. In our first experiment, we found that a short reactivation (less than 60 sec) renders the memory labile and susceptible to degradation through interference, while a longer reactivation does not. In our second experiment, we reproduce these results and show a significant linear relationship between the length of memory reactivation and the detrimental effect of the interfering task performed afterwards, i.e., the longer the reactivation, the smaller the memory loss due to interference. Our data suggest that reactivation via motor execution activates a time-dependent process that initially destabilizes the memory, which is then followed by restabilization during further practice.
Neurodevelopmental disconnections have been assumed to cause behavioral alterations in autism spectrum disorders (ASDs). Here, we combined measurements of intrinsic functional connectivity (iFC) from resting-state functional magnetic resonance imaging (fMRI) with task-based fMRI to explore whether altered activity and/or iFC of the right posterior superior temporal sulcus (pSTS) mediates deficits in emotion recognition in ASD. Fifteen adults with ASD and 15 matched-controls underwent resting-state and task-based fMRI, during which participants discriminated emotional states from point light displays (PLDs). Intrinsic FC of the right pSTS was further examined using 584 (278 ASD/306 controls) resting-state data of the Autism Brain Imaging Data Exchange (ABIDE). Participants with ASD were less accurate than controls in recognizing emotional states from PLDs. Analyses revealed pronounced ASD-related reductions both in task-based activity and resting-state iFC of the right pSTS with fronto-parietal areas typically encompassing the action observation network (AON). Notably, pSTS-hypo-activity was related to pSTS-hypo-connectivity, and both measures were predictive of emotion recognition performance with each measure explaining a unique part of the variance. Analyses with the large independent ABIDE dataset replicated reductions in pSTS-iFC to fronto-parietal regions. These findings provide novel evidence that pSTS hypo-activity and hypo-connectivity with the fronto-parietal AON are linked to the social deficits characteristic of ASD.
The multiple memory systems hypothesis posits that dorsal striatum and hippocampus are central nodes in independent memory systems, supporting response-based and place-based learning, respectively. Although our understanding of the function of hippocampus within this framework is relatively well established, the contribution of dorsal striatum is less clear. This in part seems to be due to the heterogeneous nature of dorsal striatum, which receives extensive topographically organized projections from higher cortical areas. Here we quantified neural activity in the intact brain while mice and humans acquired analogous versions of the Morris water maze. We found that dorsomedial striatum and medial prefrontal cortex support the initial acquisition of what is typically considered a hippocampus-dependent spatial learning task. We suggest that the circuit involving dorsomedial striatum and medial prefrontal cortex identified here plays a more task-independent role in early learning than currently thought. Furthermore, our results demonstrate that dorsomedial and dorsolateral striatum serve fundamentally different roles during place learning. The remarkably high degree of anatomical overlap in brain function between mouse and human observed in our study emphasizes the extent of convergence achievable with a well-matched multilevel approach.functional MRI | immediate early gene | navigation T he multiple memory systems hypothesis posits that hippocampus and dorsal striatum are central nodes in independent memory systems, each supporting different aspects of learning and memory formation (1-4). In the context of spatial learning, the hippocampus supports place-based behavioral strategies relying on learning the general layout of the environment, whereas the dorsal striatum supports response-based behavioral strategies driven by task-specific stimuli (5-12). Although the dorsal striatum is often referred to as a unitary structure within the multiple memory systems framework, there is considerable evidence in rodents and humans that it is composed of functional subdivisions that support different aspects of learning (13-20).Here we conducted parallel experiments in mouse and human to test whether dorsomedial and dorsolateral striatum make distinct contributions during early (initial acquisition) and late (overtraining) phases of place learning in the intact brain. Subjects performed the classic hippocampus-dependent hidden platform version of the Morris water maze, which was matched between species with respect to behavioral processing demands (9). This widely used paradigm has served a critical role in the study of neurobiological aspects of learning and memory over the past 25 years (21,22).Although it is well established that hippocampus supports the spatial processing demands of the water maze, much less is known about the precise contribution of dorsomedial and dorsolateral striatum during the early and late phases of learning in the hiddenplatform version of the task. If dorsomedial striatum plays a general role in ...
Sex differences in humans on virtual water maze navigation are well established when overall performance is measured, e.g., by the total time taken to find the hidden platform, total path length, or quadrant dwell time during probe trials. Currently, it is unknown whether males are better spatial learners than females, or if overall performance differences reflect other aspects of the task unrelated to spatial memory. Here, males and females were tested on a virtual analogue of the Morris water maze. We devised a novel method of analysis in which each trial was divided into an initial trajectory phase and search phase. We also implemented a new measure of spatial learning during early and late training, by including trials in which subjects were only required to indicate where they thought the hidden target zone was located. Consistent with previous reports, males outperformed females on overall measures of task performance. Males also performed significantly better on all initial trajectory phase variables. Interestingly, only small (non-significant) differences were observed during the search phase and when spatial learning was tested without the constraints of a typical water maze trial. Our results suggest that spatial knowledge regarding the location of the hidden target zone is not the main factor responsible for overall sex differences in virtual water maze performance. Instead, the largest sex differences were observed during the initial trajectory phase of the trial, which is thought to depend on effective processing of distal features of the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.