BackgroundA reliable biomarker signature for bipolar disorder sensitive to illness phase would be of considerable clinical benefit. Among circulating blood-derived markers there has been a significant amount of research into inflammatory markers, neurotrophins and oxidative stress markers.AimsTo synthesise and interpret existing evidence of inflammatory markers, neurotrophins and oxidative stress markers in bipolar disorder focusing on the mood phase of illness.MethodFollowing PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses) guidelines, a systematic review was conducted for studies investigating peripheral biomarkers in bipolar disorder compared with healthy controls. We searched Medline, Embase, PsycINFO, SciELO and Web of Science, and separated studies by bipolar mood phase (mania, depression and euthymia). Extracted data on each biomarker in separate mood phases were synthesised using random-effects model meta-analyses.ResultsIn total, 53 studies were included, comprising 2467 cases and 2360 controls. Fourteen biomarkers were identified from meta-analyses of three or more studies. No biomarker differentiated mood phase in bipolar disorder individually. Biomarker meta-analyses suggest a combination of high-sensitivity C-reactive protein/interleukin-6, brain derived neurotrophic factor/tumour necrosis factor (TNF)-α and soluble TNF-α receptor 1 can differentiate specific mood phase in bipolar disorder. Several other biomarkers of interest were identified.ConclusionsCombining biomarker results could differentiate individuals with bipolar disorder from healthy controls and indicate a specific mood-phase signature. Future research should seek to test these combinations of biomarkers in longitudinal studies.Declaration of interestNone.
An analytical wind turbine wake model is proposed to predict the wind velocity distribution for all distances downwind of a wind turbine, including the near-wake. This wake model augments the Jensen model and subsequent derivations thereof, and is a direct generalization of that recently proposed by Bastankhah and Porté-Agel. The model is derived by applying conservation of mass and momentum in the context of actuator disk theory, and assuming a distribution of the double-Gaussian type for the velocity deficit in the wake. The physical solutions are obtained by appropriate mixing of the waked-and freestream velocity deficit solutions, reflecting the fact that only a portion of the fluid particles passing through the rotor disk will interact with a blade.
Extrapolations of parametric survival models fitted to censored data are routinely used in the assessment of health technologies to estimate mean survival, particularly in diseases that potentially reduce the life expectancy of patients. Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) are commonly used in health technology assessment alongside an assessment of plausibility to determine which statistical model best fits the data and should be used for prediction of long-term treatment effects. We compare fit and estimates of restricted mean survival time (RMST) from 8 parametric models and contrast models preferred in terms of AIC, BIC, and log-likelihood, without considering model plausibility. We assess the methods’ suitability for selecting a parametric model through simulation of data replicating the follow-up of intervention arms for various time-to-event outcomes from 4 clinical trials. Follow-up was replicated through the consideration of recruitment duration and minimum and maximum follow-up times. Ten thousand simulations of each scenario were performed. We demonstrate that the different methods can result in disagreement over the best model and that it is inappropriate to base model selection solely on goodness-of-fit statistics without consideration of hazard behavior and plausibility of extrapolations. We show that typical trial follow-up can be unsuitable for extrapolation, resulting in unreliable estimation of multiple parameter models, and infer that selecting survival models based only on goodness-of-fit statistics is unsuitable due to the high level of uncertainty in a cost-effectiveness analysis. This article demonstrates the potential problems of overreliance on goodness-of-fit statistics when selecting a model for extrapolation. When follow-up is more mature, BIC appears superior to the other selection methods, selecting models with the most accurate and least biased estimates of RMST.
ObjectivesBefore an intervention is publicly funded within the United Kingdom, the cost-effectiveness is assessed by the National Institute of Health and Care Excellence (NICE). The efficacy of an intervention across the patients’ lifetime is often influential of the cost-effectiveness analyses, but is associated with large uncertainties. We reviewed committee documents containing company submissions and evidence review group (ERG) reports to establish the methods used when extrapolating survival data, whether these adhered to NICE Technical Support Document (TSD) 14, and how uncertainty was addressed.MethodsA systematic search was completed on the NHS Evidence Search webpage limited to single technology appraisals of cancer interventions published in 2017, with information obtained from the NICE Web site.ResultsTwenty-eight appraisals were identified, covering twenty-two interventions across eighteen diseases. Every economic model used parametric curves to model survival. All submissions used goodness-of-fit statistics and plausibility of extrapolations when selecting a parametric curve. Twenty-five submissions considered alternate parametric curves in scenario analyses. Six submissions reported including the parameters of the survival curves in the probabilistic sensitivity analysis. ERGs agreed with the company's choice of parametric curve in nine appraisals, and agreed with all major survival-related assumptions in two appraisals.ConclusionsTSD 14 on survival extrapolation was followed in all appraisals. Despite this, the choice of parametric curve remains subjective. Recent developments in Bayesian approaches to extrapolation are not implemented. More precise guidance on the selection of curves and modelling of uncertainty may reduce subjectivity, accelerating the appraisal process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.