A micro/nano-fabrication process of a nanochannel electroporation (NEP) array and its application for precise delivery of plasmid for non-viral gene transfection is described. A dip-combing device is optimized to produce DNA nanowires across a microridge array patterned on the polydimethylsiloxane (PDMS) surface with a yield up to 95%. Molecular imprinting based on a low viscosity resin, 1,4-butanediol diacrylate (1,4-BDDA), adopted to convert the microridge-nanowire-microridge array into a microchannel-nanochannel-microchannel (MNM) array. Secondary machining by femtosecond laser ablation is applied to shorten one side of microchannels from 3000 to 50 μm to facilitate cell loading and unloading. The biochip is then sealed in a packaging case with reservoirs and microfluidic channels to enable cell and plasmid loading, and to protect the biochip from leakage and contamination. The package case can be opened for cell unloading after NEP to allow for the follow-up cell culture and analysis. These NEP cases can be placed in a spinning disc and up to ten discs can be piled together for spinning. The resulting centrifugal force can simultaneously manipulate hundreds or thousands of cells into microchannels of NEP arrays within 3 minutes. To demonstrate its application, a 13 kbp OSKM plasmid of induced pluripotent stem cell (iPSC) is injected into mouse embryonic fibroblasts cells (MEFCs). Fluorescence detection of transfected cells within the NEP biochips shows that the delivered dosage is high and much more uniform compared with similar gene transfection carried out by the conventional bulk electroporation (BEP) method.
SMART VEHICLES WORKSHOP] This paper presents the design, theoretical analysis, microfabrication and testing of a new type of millimeter-size acoustic sensor using Polyvinylidene Fluoride (PVDF) micropillars and patterned electrodes. The sensor has the potential to achieve 100× the sensitivity of existing commercial sensors in combination with a sound pressure level (SPL) range of 35-180 dB and a frequency bandwidth of at least 100 kHz. A constrained optimization algorithm has been developed as a function of geometric parameters (sensor footprint, diameter and height of the micropillars, gap between pillar edges, and number of pillars) and electrical parameters of the sensor and conditioning amplifier. Details of the fabrication process are described. Nanoindentation tests demonstrate that the PVDF micropillar sensor exhibits piezoelectric responses under an applied voltage or strain, thus demonstrating the sensor concept. Operational amplifier circuit design and experimental setup are also described and developed.
This paper addresses the design and theoretical analysis of a new type of millimeter-size acoustic sensor that uses Polyvinylidene Fluoride (PVDF) micro-pillars and patterned electrodes. The sensor has the potential to achieve 100x the sensitivity of existing commercial sensors in combination with a dynamic range of 181dB and a frequency bandwidth of at least 100 kHz. A constrained optimization algorithm has been developed as a function of geometric parameters (sensor footprint, diameter and height of the micro-pillars, gap between pillar edges, number of pillars) and electrical parameters of the sensor and conditioning amplifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.