Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.
The difficulties in quantifying the 3D form and spatial relationships of the skeletal components of the ribcage present a barrier to studies of the growth of the thoracic skeleton. Thus, most studies to date have relied on traditional measurements such as distances and indices from single or few ribs. It is currently known that adult-like thoracic shape is achieved early, by the end of the second postnatal year, with the circular cross-section of the newborn thorax transforming into the ovoid shape of adults; and that the ribs become inclined such that their anterior borders come to lie inferior to their posterior. Here we present a study that revisits growth changes using geometric morphometrics applied to extensive landmark data taken from the ribcage. We digitized 402 (semi) landmarks on 3D reconstructions to assess growth changes in 27 computed tomography-scanned modern humans representing newborns to adults of both sexes. Our analyses show a curved ontogenetic trajectory, resulting from different ontogenetic growth allometries of upper and lower thoracic units. Adult thoracic morphology is achieved later than predicted, by diverse modifications in different anatomical regions during different ontogenetic stages. Besides a marked increase in antero-posterior dimensions, there is an increase in medio-lateral dimensions of the upper thorax, relative to the lower thorax. This transforms the pyramidal infant thorax into the barrel-shaped one of adults. Rib descent is produced by complex changes in 3D curvature. Developmental differences between upper and lower thoracic regions relate to differential timings and rates of maturation of the respiratory and digestive systems, the spine and the locomotor system. Our findings are relevant to understanding how changes in the relative rates of growth of these systems and structures impacted on the development and evolution of modern human body shape.
Number of tables: 2Abbreviated title: 3D morphometrics of human rib cage.Key words: rib cage; geometric morphometrics; sex differences. This is the peer reviewed version of the following article: American Journal of Physical Anthropology 161(3): 467-477 (2016), which has been published in final form at http://dx.doi.org/10.1002/ajpa.23051. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. *Corresponding author:2 Title: Morphological and functional implications of sexual dimorphism in the human skeletal thorax. ABSTRACT Objectives:The human respiratory apparatus is characterized by sexual dimorphism, the cranial airways of males being larger (both absolutely and relatively) than those of females. These differences have been linked to sex-specific differences in body composition, bioenergetics and respiratory function. However, whether morpho-functional variation in the thorax is also related to these features is less clear. We apply 3D geometric morphometrics to study these issues and their implications for respiratory function. Material and methods:402 landmarks and semilandmarks were measured in CT-reconstructions of rib cages from adult healthy subjects (N male =18; N female =24) in maximal inspiration (MI) and maximal expiration (ME). After Procrustes registration, size and shape data were analyzed by mean comparisons and regression analysis. Respiratory function was quantified through functional size, which is defined as the difference of rib cage size between MI and ME.Results: Males showed significantly larger thorax size (p<0.01) and functional size (p<0.05) than females. In addition, the 3D-shape differed significantly between sexes (p<0.01). Male rib cages were wider (particularly caudally) and shorter, with more horizontally oriented ribs when compared to females. While thorax widening and rib orientation were unrelated to allometry, thorax shortening showed a slight allometric signal. Conclusions:Our findings are in line with previous research on sexual dimorphism of the respiratory system. However, we add that thorax shortening observed previously in males is the only feature caused by allometry. The more horizontally oriented ribs and the wider thorax of males may indicate a greater diaphragmatic contribution to rib cage kinematics than in females, and differences in functional size fit with the need for greater oxygen intake in males.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.