An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/sqrt[x(2)+β(2)], which becomes numerically intractable (because of extreme stiffness) as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β = 10(-8) using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as β → 0.
This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.