Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. In many applications such as autonomous driving, failures cannot be completely eliminated due to the complex stochastic environment in which the system operates. As a result, safety validation is not only concerned about whether a failure can occur, but also discovering which failures are most likely to occur. This article presents adaptive stress testing (AST), a framework for finding the most likely path to a failure event in simulation. We consider a general black box setting for partially observable and continuous-valued systems operating in an environment with stochastic disturbances. We formulate the problem as a Markov decision process and use reinforcement learning to optimize it. The approach is simulation-based and does not require internal knowledge of the system, making it suitable for black-box testing of large systems. We present different formulations depending on whether the state is fully observable or partially observable. In the latter case, we present a modified Monte Carlo tree search algorithm that only requires access to the pseudorandom number generator of the simulator to overcome partial observability. We also present an extension of the framework, called differential adaptive stress testing (DAST), that can find failures that occur in one system but not in another. This type of differential analysis is useful in applications such as regression testing, where we are concerned with finding areas of relative weakness compared to a baseline. We demonstrate the effectiveness of the approach on an aircraft collision avoidance application, where a prototype aircraft collision avoidance system is stress tested to find the most likely scenarios of near mid-air collision.
Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. While efficient solutions exist for certain classes of systems, a scalable general solution for stochastic, partially observable, and continuous-valued systems remains challenging. Existing formal and simulation-based methods either cannot scale to large systems or are computationally inefficient. This paper presents adaptive stress testing (AST), a framework for searching a simulator for the most likely path to a failure event. We formulate the problem as a Markov decision process and use reinforcement learning to optimize it. The approach is simulation-based and does not require internal knowledge of the system, making it suitable for black box testing of large systems. We present formulations for both systems where the state is fully observable and partially observable. In the latter case, we present a modified Monte Carlo tree search algorithm, called Monte Carlo tree search for seed-action simulators (MCTS-SA), that only requires access to the pseudorandom number generator of the simulator to overcome partial observability. We also present an extension of the framework, called differential adaptive stress testing (DAST), that can be used to find failures that occur in one system but not in another. This type of differential analysis is useful in applications such as regression testing, where we are concerned with finding areas of relative weakness compared to a baseline. We demonstrate the effectiveness of the approach on an aircraft collision avoidance application, where a prototype aircraft collision avoidance system is stress tested to find the most likely failure scenarios.
The next-generation Airborne Collision Avoidance System (ACAS X) is currently being developed and tested to replace the Traffic Alert and Collision Avoidance System (TCAS) as the next international standard for collision avoidance. To validate the safety of the system, stress testing in simulation is one of several approaches for analyzing near mid-air collisions (NMACs). Understanding how NMACs can occur is important for characterizing risk and informing development of the system. Recently, adaptive stress testing (AST) has been proposed as a way to find the most likely path to a failure event. The simulation-based approach accelerates search by formulating stress testing as a sequential decision process then optimizing it using reinforcement learning. The approach has been successfully applied to stress test a prototype of ACAS X in various simulated aircraft encounters. In some applications, we are not as interested in the system's absolute performance as its performance relative to another system. Such situations arise, for example, during regression testing or when deciding whether a new system should replace an existing system. In our collision avoidance application, we are interested in finding cases where ACAS X fails but TCAS succeeds in resolving a conflict. Existing approaches do not provide an efficient means to perform this type of analysis. This paper extends the AST approach to differential analysis by searching two simulators simultaneously and maximizing the difference between their outcomes. We call this approach differential adaptive stress testing (DAST). We apply DAST to compare a prototype of ACAS X against TCAS and show examples of encounters found by the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.