Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food preservation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the enzymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glandular trichomes of sweet basil (Ocimum basilicum), which synthesize and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol. Petunia (Petunia hybrida cv. Mitchell) flowers, which emit large amounts of isoeugenol, possess an enzyme homologous to the basil eugenol-forming enzyme that also uses coniferyl acetate and NADPH as substrates but catalyzes the formation of isoeugenol. The basil and petunia phenylpropene-forming enzymes belong to a structural family of NADPH-dependent reductases that also includes pinoresinol-lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase.floral scent ͉ phenylpropanoids ͉ phenylpropenes ͉ plant volatiles ͉ secondary compounds
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.
This comprehensive review describes the current status and knowledge of biochemical and molecular processes involved in allyl/propenyl phenol, lignan, norlignan and lignin biosynthesis. Recent advances made over the last decade are critically discussed, and placed in context with earlier studies largely dating back to the 1950s. Beginning with the recently established formation of phenylalanine in plants, each downstream biochemical conversion is described from the perspective of the mechanistic details known to this point. Particular emphasis is placed upon proteinaceous control of monolignol-derived radical-radical coupling processes, leading to lignans and lignins, as well as apparently related processes affording the various ellagitannins and phenolic terpenoids. The evidence for non-random macromolecular lignin assembly is discussed in detail, this being in contrast to earlier notions that such processes were random. The latter assumptions have largely resulted from a lack of robust analytical procedures and rigorous quantification, as well as a lack of incisive experimental design. In addition, the often-noted severe effects of modulating lignin compositions and contents on plant vascular tissue properties (i.e. in terms of compromised biophysical properties) are described herein, as well as the severe limitations as regards recent claims of compensatory 'combinatorial chemistry' lignin formation. Much of the latter confusion has also resulted from the serious deficiencies in current lignin analytical protocols and quantification, as well as in the general lack of experimental approaches/design to probe lignin primary structure(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.