Myofiber degeneration, inflammation, and fibrosis are remarkable features of Duchenne muscular dystrophy. We hypothesized that the administration of imatinib mesylate, an inhibitor of tyrosine kinase and TGF-beta pro-fibrogenic activity, could improve the muscular conditions in mdx mice. Four-week old mdx mice were treated and exercised for 6 weeks. Gastrocnemius and diaphragm histopathology, strength, creatine kinase, and cytokine levels were evaluated. The treated group presented increased muscular strength and decreased CK levels, injured myofibers, and inflammatory infiltrates. Pro-inflammatory cytokines and TGF-beta were also reduced, while IL-10 was increased, suggesting an immunomodulatory effect of imatinib, which can ameliorate the dystrophic phenotype in mdx mice.
Muscle degenerative diseases such as Duchenne Muscular Dystrophy are incurable and treatment options are still restrained. Understanding the mechanisms and factors responsible for muscle degeneration and regeneration will facilitate the development of novel therapeutics. Several recent studies have demonstrated that Galectin-1 (Gal-1), a carbohydrate-binding protein, induces myoblast differentiation and fusion in vitro, suggesting a potential role for this mammalian lectin in muscle regenerative processes in vivo. However, the expression and localization of Gal-1 in vivo during muscle injury and repair are unclear. We report the expression and localization of Gal-1 during degenerative-regenerative processes in vivo using two models of muscular dystrophy and muscle injury. Gal-1 expression increased significantly during muscle degeneration in the murine mdx and in the canine Golden Retriever Muscular Dystrophy animal models. Compulsory exercise of mdx mouse, which intensifies degeneration, also resulted in sustained Gal-1 levels. Furthermore, muscle injury of wild-type C57BL/6 mice, induced by BaCl(2) treatment, also resulted in a marked increase in Gal-1 levels. Increased Gal-1 levels appeared to localize both inside and outside the muscle fibers with significant extracellular Gal-1 colocalized with infiltrating CD45(+) leukocytes. By contrast, regenerating muscle tissue showed a marked decrease in Gal-1 to baseline levels. These results demonstrate significant regulation of Gal-1 expression in vivo and suggest a potential role for Gal-1 in muscle homeostasis and repair.
Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin. Several previous studies demonstrated the feasibility of delivering microdystrophin complementary DNA (cDNA) into mouse and normal nonhuman primate muscles by ex vivo gene therapy. However, these animal models do not reproduce completely the human DMD phenotype, while the dystrophic dog model does. To progress toward the use of the best animal model of DMD, a dog microdystrophin was transduced into human and dystrophic dog muscle precursor cells (MPCs) with a lentivirus before their transplantation into mouse muscles. One month following MPC transplantation, myofibers expressing the dog microdystrophin were observed. We also used another approach to introduce this transgene into myofibers, i.e., the electrotransfer of a plasmid coding for the dog microdystrophin. The plasmid was injected into mouse and dog muscles, and brief electric pulses were applied in the region of injection. Two weeks later, the transgene was detected in both animals. Therefore, ex vivo gene therapy and electrotransfer are two possible methods to introduce a truncated version of dystrophin into myofibers of animal models and eventually into myofibers of DMD patients.
Natural compounds represent a rich and promising source of novel, biologically active chemical entities for treating leishmaniasis. Sesquiterpene lactones are a recognized class of terpenoids with a wide spectrum of biological activities, including activity against Leishmania spp. In this work, a sesquiterpene lactone-rich preparation-a leaf rinse extract (LRE) from Tithonia diversifolia-was tested against promastigote forms of L. braziliensis. The results revealed that the LRE is a rich source of potent leishmanicidal compounds, with an LD 50 value 1.5 ± 0.50 µg·mL ). The five leishmanicidal compounds with the highest level of selectivity were further evaluated against intracellular parasites (amastigotes) using peritoneal macrophages. Tirotundin 3-O-methyl ether, OPEN ACCESSMolecules 2014, 19 6071 tagitinin F, and a guaianolide reduced the internalization of parasites after 48 h, in comparison with the negative control. This is the first report on sesquiterpene lactones that have potent leishmanicidal effects on both developmental stages of L. braziliensis.
Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle. To achieve this nonviral delivery, the FLDYS(dog) cDNA was cloned in two plasmids containing either a cytomegalovirus or a muscle creatine kinase promoter. In both cases, our results showed that the electrotransfer of these large plasmids (∼17 kb) into mouse muscle allowed FLDYS(dog) expression in the treated muscle. The electrotransfer of pCMV.FLDYS(dog) in a dystrophic dog muscle also led to the expression of dystrophin. In conclusion, introduction of the full-length dog dystrophin cDNA by electrotransfer into dystrophic dog muscle is a potential approach to restore dystrophin in patients with DMD. However, the electrotransfer procedure should be improved before applying it to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.