In a production plant for complex assembled products there could be up to several hundred of robots used for handling and joining operations. Thus, improvement in robot motions can have a huge impact on equipment utilization and energy consumption. These are two of the most important aspects of sustainability in a production system. Therefore, this paper presents an algorithm for generating efficient and collision free motion of industrial robots using path planning and direct transcription methods for numerical optimal control. As a measure of efficiency for moving between configurations we use a combination of the energy norm of the applied actuator torques and the cycle time. Velocity and torque limits are handled and modeled as hard constraints. However, more general problems can be solved by the same approach. Our novel algorithm solves the problem in three steps; (i) first a path planning algorithm calculates an initial collision free path, (ii) a convex optimal c ontrol problem is then formulated to follow this path, and finally (iii) a nonlinear optimal control problem is solved to iteratively improve the trajectory. The resulting trajectory is guaranteed to be collision free by restrictions in the configuration space based on a local sensitivity analysis. The algorithm has been successfully applied to several industrial cases demonstrating that the proposed method can be used effectively in practical applications
In the manufacturing industry, spray painting is often an important part of the manufacturing process. Especially in the automotive industry, the perceived quality of the final product is closely linked to the exactness and smoothness of the painting process. For complex products or low batch size production, manual spray painting is often used. But in large scale production with a high degree of automation, the painting is usually performed by industrial robots. There is a need to improve and simplify the generation of robot trajectories used in industrial paint booths. A novel method for spray paint optimization is presented, which can be used to smooth out a generated initial trajectory and minimize paint thickness deviations from a target thickness. The smoothed out trajectory is found by solving, using an interior point solver, a continuous non-linear optimization problem. A two-dimensional reference function of the applied paint thickness is selected by fitting a spline function to experimental data. This applicator footprint profile is then projected to the geometry and used as a paint deposition model. After generating an initial trajectory, the position and duration of each trajectory segment are used as optimization variables. The primary goal of the optimization is to obtain a paint applicator trajectory, which would closely match a target paint thickness when executed. The algorithm has been shown to produce satisfactory results on both a simple 2-dimensional test example, and a non-trivial industrial case of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.