Background and objectives Patients receiving hemodialysis are at high risk for both SARS-CoV-2 infection and severe COVID-19 disease. A life-saving vaccine is available, but sensitivity to vaccines is generally lower in dialysis patients. Little is yet known about antibody responses after COVID-19 vaccination in this vulnerable group. Design, setting, participants, and measurements In this prospective single-center study, we included 22 dialysis patients and 46 healthy controls from Heidelberg University Hospital between December 2020 and February 2021. We measured anti-S1 IgG with a threshold index for detection >1, neutralizing antibodies with a threshold for viral neutralization of ≥30% and antibodies against different SARS-CoV-2 fragments 17-22 days after the first and 18-22 days after the second dose of the mRNA vaccine BNT162b2. Results After the first vaccine dose, 4/22 (18%) dialysis patients compared with 43/46 (93%) healthy controls developed positive anti-S1 IgG, with a median (IQR) anti-S1 IgG index of 0.2 (0.1-0.7) compared with 9 (4-16), respectively. SARS-CoV-2 neutralizing antibodies exceeded the threshold for neutralization in 4/22 (18%) dialysis patients compared with 43/46 (93%) in healthy controls, with a median (IQR) percent inhibition of 11 (3-24) compared with 65 (49-75), respectively. After the second dose, 14/17 (82%) of dialysis patients developed neutralizing antibodies exceeding the threshold for viral neutralization and antibodies against the receptor-binding S1-domain of the spike protein, compared to 46/46 (100%) of healthy controls, respectively. The median (IQR) percent inhibition was 51 (32-86) compared to 98 (97-98) in healthy controls. Conclusions Patients receiving long-term hemodialysis show a reduced antibody response to the first and second doses of the mRNA vaccine BNT162b2. The majority (82%) develop neutralizing antibodies after the second dose, but at lower levels than healthy controls.
Seroconversion rates following infection and vaccination are lower in dialysis patients compared to healthy controls. There is an urgent need for the characterization of humoral responses and success of a single-dose SARS-CoV-2 vaccination in previously infected dialysis patients. We performed a dual-center cohort study comparing three different groups: 25 unvaccinated hemodialysis patients after PCR-confirmed COVID-19 (Group 1), 43 hemodialysis patients after two-time BNT162b2 vaccination without prior SARS-CoV-2 infection (Group 2), and 13 single-dose vaccinated hemodialysis patients with prior SARS-CoV-2 infection (Group 3). Group 3 consists of seven patients from Group 1 and 6 additional patients with sera only available after single-dose vaccination. Anti-S1 IgG, neutralizing antibodies, and antibodies against various SARS-CoV-2 protein epitopes were measured 3 weeks after the first and 3 weeks after the second vaccination in patients without prior SARS-CoV-2 infection, 6 weeks after the onset of COVID-19 in unvaccinated patients, and 3 weeks after single-dose vaccination in patients with prior SARS-CoV-2 infection, respectively. Unvaccinated patients after COVID-19 showed a significantly higher neutralizing antibody capacity than two-time vaccinated patients without prior COVID-19 [median (IQR) percent inhibition 88.0 (71.5–95.5) vs. 50.7 (26.4–81.0); P = 0.018]. After one single vaccine dose, previously infected individuals generated 15- to 34-fold higher levels of anti-S1 IgG than age- and dialysis vintage-matched unvaccinated patients after infection or two-time vaccinated patients without prior SARS-CoV-2 infection with a median (IQR) index of 274 (151–791) compared to 18 (8–41) and 8 (1–21) (for both P < 0.001). With a median (IQR) percent inhibition of 97.6 (97.2–98.9), the neutralizing capacity of SARS-CoV-2 antibodies was significantly higher in single-dose vaccinated patients with prior SARS-CoV-2 infection compared to other groups (for both P < 0.01). Bead-based analysis showed high antibody reactivity against various SARS-CoV-2 spike protein epitopes after single-dose vaccination in previously infected patients. In conclusion, single-dose vaccination in previously infected dialysis patients induced a strong and broad antibody reactivity against various SARS-CoV-2 spike protein epitopes with high neutralizing capacity.
Extracorporeal liver-support therapies remain controversial in critically ill patients, as most studies have failed to show an improvement in outcomes. However, heterogeneous timing and inclusion criteria, an insufficient number of treatments, and the lack of a situation-dependent selection of available liver-support modalities may have contributed to negative study results. We retrospectively investigated the procedural characteristics and safety of the three liver-support therapies CytoSorb, Molecular Adsorbent Recirculating System (MARS) and therapeutic plasma exchange (TPE). Whereas TPE had its strengths in a shorter treatment duration, in clearing larger molecules, affecting platelet numbers less, and improving systemic coagulation and hemodynamics, CytoSorb and MARS were associated with a superior reduction in particularly small protein-bound and water-soluble substances. The clearance magnitude was concentration-dependent for all three therapies, but additionally related to the molecular weight for CytoSorb and MARS therapy. Severe complications did not appear. In conclusion, a better characterization of disease-driving as well as beneficial molecules in critically ill patients with acute liver dysfunction is crucial to improve the use of liver-support therapy in critically ill patients. TPE may be beneficial in patients at high risk for bleeding complications and impaired liver synthesis and hemodynamics, while CytoSorb and MARS may be considered for patients in whom the elimination of smaller toxic compounds is a primary objective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.