The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury.electrophysiology | connectivity | silk | scaffold | traumatic brain injury
The cortical circuitry in the brain consists of structurally and functionally distinct neuronal assemblies with reciprocal axon connections. To generate cell culture-based systems that emulate axon tract systems of an in vivo neural network, we developed a living neural circuit consisting of compartmentalized neuronal populations connected by arrays of two millimeter-long axon tracts that are integrated on a planar multi-electrode array (MEA). The millimeter-scale node-to-node separation allows for pharmacological and electrophysiological manipulations to simultaneously target multiple neuronal populations. The results show controlled selectivity of dye absorption by neurons in different compartments. MEA-transmitted electrical stimulation of targeted neurons shows ∼46% increase of intracellular calcium levels with 20 Hz stimulation, but ∼22% decrease with 2k Hz stimulation. The unique feature of long distance axons promotes in vivo-like fasciculation. These axon tracts are determined to be inhibitory afferents by showing increased action potential firing of downstream node upon selective application of γ-aminobutyric acid (GABA) to the upstream node. Together, this model demonstrates integrated capabilities for assessing multiple endpoints including axon tract tracing, calcium influx, network architecture and activities. This system can be used as a multi-functional platform for studying axon tract-associated CNS disorders in vitro, such as diffuse axonal injury after brain trauma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.