This article describes the sorption properties of cyclodextrin polymers (nanosponges; NS) with the pesticides 4-chlorophenoxyacetic acid (4-CPA) and 2,3,4,6-tetrachlorophenol (TCF), including an evaluation of its efficiency and a comparison with other materials, such as granulated activated carbon (GAC). NS-pesticide complexes were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray powder diffraction (XRPD), proton nuclear magnetic resonance (1H-NMR), UV–VIS, and thermogravimetric analysis (TGA). This confirms the interactions of the guests with nanosponges and shows that the polymers have favorable sorption capacities for chlorinated aromatic guests. Our studies also show that the inclusion complex is predominantly favored for NS/CPA rather than those formed between TCF and NS due to the size of the adsorbate and steric effects. Sorption studies carried with repeated cycles demonstrate that NS polymers could be an improved technology for pollutant removal from aquatic environments, as they are very efficient and reusable materials. Our experiments and characterization by SEM, EDS, UV–VIS, and magnetization saturation (VSM) also show that NS is an optimal substrate for the deposition of magnetite nanoparticles, thus improving the usefulness and properties of the polymer, as the nanosponges could be retrieved from aqueous solution with a neodymium magnet without losing its efficiency as a pesticide sorbent.
In this work, we report the preparation of silver nanoparticles (AgNPs) and the nanodecoration of α-cyclodextrin inclusion compounds (α-CD IC) microcrystals that contain palmitic (PAc) and stearic acids (SAc) like guest molecules. These IC provide a suitable environment for nucleation, epitaxial growth and immobilization of AgNPs that were obtained by the magnetron sputtering technique. The use of α-CD IC substrates with a specific surface morphology in which the functional group of the guest molecule faces outward preferentially from a crystal plane, is an efficient method for the preparation of AgNPs with a low size dispersion, which is probably due to the high affinity between the functional group of the surfactant carboxylic acid guest with the metal nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.