Non-stoichiometry is the key to single-phase layered compounds in the system Mn/Bi/Te, which is essential to evaluate their multifunctional properties.
The nitridophosphates AEP8N14 (AE=Ca, Sr, Ba) were synthesized at 4–5 GPa and 1050–1150 °C applying a 1000 t press with multianvil apparatus, following the azide route. The crystal structures of CaP8N14 and SrP8N14 are isotypic. The space group Cmcm was confirmed by powder X‐ray diffraction. The structure of BaP8N14 (space group Amm2) was elucidated by a combination of transmission electron microscopy and diffraction of microfocused synchrotron radiation. Phase purity was confirmed by Rietveld refinement. IR spectra are consistent with the structure models and the chemical compositions were confirmed by X‐ray spectroscopy. Luminescence properties of Eu2+‐doped samples were investigated upon excitation with UV to blue light. CaP8N14 (λem=470 nm; fwhm=1380 cm−1) and SrP8N14 (λem=440 nm; fwhm=1350 cm−1) can be classified as the first ultra‐narrow‐band blue‐emitting Eu2+‐doped nitridophosphates. BaP8N14 shows a notably broader blue emission (λem=417/457 nm; fwhm=2075/3550 cm−1).
Purpose
– This paper aims to present the results that can be achieved using continuous three-dimensional (3D) printing technology.
Design/methodology/approach
– In the first section, conventional additive manufacturing and continuous 3D-printing are described and compared against each other. Essential is the new approach to coat the particulate material and to print it on a tilted surface. For this special setup, theoretical considerations for sources of distortions are given. These considerations define the design of the test parts. For the evaluation of a tilted setup a prototype using large dimensions is shown. Of special interest is the exact transportation using a large mass of particulate material.
Findings
– The 3D-printing principle is suitable for tilted surfaces, making production without any downtime possible. The parts produced using the prototype continuous 3D-printer have sufficient accuracy for foundry use, although various considerations and the setup show that angular deflections can be caused by inaccuracies in the feeding system.
Research limitations/implications
– The parts’ accuracy is additionally affected by the thickness of unbound particle material under the building area. The amount of unbound particle material is of a constructive nature. Thus, the setup is limiting the investigations. Using the current material system, the printing should take place as near to the conveyor belt as possible.
Practical implications
– This paper outlines which kind of parts can be manufactured using continuous 3D-printing.
Originality/value
– This article shows a first evaluation of parts printed using continuous 3D-printing. It gives a perspective on future designs from rapid prototyping machines based on these principles and shows the possible benefits. The change over from rapid prototyping to rapid manufacturing will be strongly accelerated by said machine design.
The paper at hand introduces a 3D printing (3DP) process for additive manufacturing of inorganically bound sand moulds. The fundamental differences to 3DP with organic binders (which is state of the art) are explained and the quality relevant process parameters of the inorganic process are introduced. Since the inorganic binder system is thermally activated during the printing process the main focus lies on the heating procedure. The properties of printed specimens are measured by the quality features fluid migration and strength for which novel methods of moulding sand testing are used. Results show that the identified process parameters have a significant influence on specimen properties. The interaction of the attributes fluid migration and strength are also shown. By understanding the relationship between process parameters and quality features the properties of printed inorganic sand moulds can be tailored to fit casting specific requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.