Abstract-We describe an efficient, reliable, and robust fourrotor flying platform for indoor and outdoor navigation. Currently, similar platforms are controlled at low frequencies due to hardware and software limitations. This causes uncertainty in position control and instable behavior during fast maneuvers. Our flying platform offers a 1 kHz control frequency and motor update rate, in combination with powerful brushless DC motors in a light-weight package. Following a minimalistic design approach this system is based on a small number of lowcost components. Its robust performance is achieved by using simple but reliable highly optimized algorithms. The robot is small, light, and can carry payloads of up to 350g.
In this paper we describe the design and control algorithms of AMOUR, a low-cost autonomous underwater vehicle (AUV) capable of missions of marine survey and monitoring. AMOUR is a highly maneuverable robot capable of hovering and carrying dynamic payloads during a single mission. The robot can carry a variety of payloads. It uses internal buoyancy and balance control mechanisms to achieve power efficient motions regardless of the payload size. AMOUR is designed to operate in synergy with a wireless underwater sensor network (WUSN) of static nodes. The robot's payload was designed in order to deploy, relocate and recover the static sensor nodes. It communicates with the network acoustically for signaling and localization and optically for data muling. We present control algorithms, navigation algorithms, and experimental data from pool and ocean trials with AMOUR that demonstrate its basic navigation capabilities, power efficiency, and ability to carry dynamic payloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.