This article surveys emerging technologies related to pervasive edge computing (PEC) for industrial internet-of-things (IIoT) enabled by fifth-generation (5G) and beyond communication networks. PEC encompasses all devices that are capable of performing computational tasks locally, including those at the edge of the core network (edge servers co-located with 5G base stations) and in the radio access network (sensors, actuators, etc.). The main advantages of this paradigm are core network offloading (and benefits therefrom) and low latency for delay-sensitive applications (e.g., automatic control). We have reviewed the state-of-the-art in the PEC paradigm and its applications to the IIoT domain, which have been enabled by the recent developments in 5G technology. We have classified and described three important research areas related to PEC-distributed artificial intelligence methods, energy efficiency, and cyber security. We have also identified the main open challenges that must be solved to have a scalable PEC-based IIoT network that operates efficiently under different conditions. By explaining the applications, challenges, and opportunities, our paper reinforces the perspective that the PEC paradigm is an extremely suitable and important deployment model for industrial communication networks, considering the modern trend toward private industrial 5G networks with local operations and flexible management.
The dominance of distributed energy resources in microgrids and the associated weather dependency require flexible protection. They include devices capable of adapting their protective settings as a reaction to (potential) changes in system state. Communication technologies have a key role in this system since the reactions of the adaptive devices shall be coordinated. This coordination imposes strict requirements: communications must be available and ultra-reliable with bounded latency in the order of milliseconds. This paper reviews the state-of-theart in the field and provides a thorough analysis of the main related communication technologies and optimization techniques. We also present our perspective on the future of communication deployments in microgrids, indicating the viability of 5G wireless systems and multi-connectivity to enable adaptive protection.
This paper introduces a general approach to design a tailored solution to detect rare events in different industrial applications based on Internet of Things (IoT) networks and machine learning algorithms. We propose a general framework based on three layers (physical, data and decision) that defines the possible designing options so that the rare events/anomalies can be detected ultra-reliably. This general framework is then applied in a well-known benchmark scenario, namely Tennessee Eastman Process. We then analyze this benchmark under three threads related to data processes: acquisition, fusion and analytics. Our numerical results indicate that: (i) event-driven data acquisition can significantly decrease the number of samples while filtering measurement noise, (ii) mutual information data fusion method can significantly decrease the variable spaces and (iii) quantitative association rule mining method for data analytics is effective for the rare event detection, identification and diagnosis. These results indicates the benefits of an integrated solution that jointly considers the different levels of data processing following the proposed general three layer framework, including details of the communication network and computing platform to be employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.