Context:Aldosterone synthase (CYP11B2) immunohistochemistry and next-generation sequencing (NGS) have revealed the frequent presence of aldosterone-producing cell clusters (APCCs) harboring somatic mutations in aldosterone-regulating genes in adrenals from Americans without defined hypertension status.Objective:Determine the frequency and somatic mutation status of APCCs in a Japanese nonhypertensive cohort.Design, Setting, Patients, and Interventions:Adrenals from 837 consecutive autopsies at a Japanese institution, Tohoku University Hospital, were screened to select 107 unilateral adrenal glands from nonhypertensive patients. APCC score (APCC number/adrenal cortex area per case) was assessed by CYP11B2 immunohistochemistry. DNA from all APCCs and adjacent adrenal cortex was subjected to NGS using two panels targeting aldosterone-regulating genes.Primary Outcome Measure:APCC frequency and somatic mutation spectrum.Results:In 107 adrenals, 61 APCCs were detected (average of 0.6 APCCs per gland). APCC score was positively correlated with age (r = 0.50, P < 0.0001). NGS demonstrated high confidence somatic mutations in 21 of 61 APCCs (34%). Notably, 16 of 21 APCCs (76%) harbored somatic mutations in CACNA1D, the most frequently mutated gene in our previous studies of APCCs in Americans and CYP11B2-positive micronodules in cross-sectional imaging (computed tomography) negative primary aldosteronism (PA), whereas no APCCs harbored mutations in KCNJ5, the most frequently mutated gene in aldosterone-producing adenoma. APCC score was significantly lower than our previous cohort of unilateral computed tomography–negative PA.Conclusions:APCCs are frequent in nonhypertensive Japanese adrenals, accumulate with age, and frequently harbor somatic mutations (most commonly in CACNA1D). The role of APCCs in PA pathobiology and non-PA hypertension warrants further investigation.
BACKGROUND. Commercial gene expression assays are guiding clinical decision making in patients with prostate cancer, particularly when considering active surveillance. Given heterogeneity and multifocality of primary prostate cancer, such assays should ideally be robust to the coexistence of unsampled higher grade disease elsewhere in the prostate in order to have clinical utility. Herein, we comprehensively evaluated transcriptomic profiles of primary multifocal prostate cancer to assess robustness to clinically relevant multifocality. METHODS. We designed a comprehensive, multiplexed targeted RNA-sequencing assay capable of assessing multiple transcriptional classes and deriving commercially available prognostic signatures, including the Myriad Prolaris Cell Cycle Progression score, the Oncotype DX Genomic Prostate Score, and the GenomeDX Decipher Genomic Classifier. We applied this assay to a retrospective, multi-institutional cohort of 156 prostate cancer samples. Derived commercial biomarker scores for 120 informative primary prostate cancer samples from 44 cases were determined and compared. RESULTS. Derived expression scores were positively correlated with tumor grade (r S = 0.53-0.73; all P < 0.001), both within the same case and across the entire cohort. In cases of extreme gradediscordant multifocality (co-occurrence of grade group 1 [GG1] and ≥GG4 foci], gene expression scores were significantly lower in low-(GG1) versus high-grade (≥GG4) foci (all P < 0.001). No significant differences in expression scores, however, were observed between GG1 foci from prostates with and without coexisting higher grade cancer (all P > 0.05). CONCLUSIONS. Multifocal, low-grade and high-grade prostate cancer foci exhibit distinct prognostic expression signatures. These findings demonstrate that prognostic RNA expression assays performed on low-grade prostate cancer biopsy tissue may not provide meaningful information on the presence of coexisting unsampled aggressive disease.
Addressing drug resistance is a core challenge in cancer research, but the degree of heterogeneity in resistance mechanisms in cancer is unclear. In this study, we conducted next-generation sequencing (NGS) of circulating tumor cells (CTC) from patients with advanced cancer to assess mechanisms of resistance to targeted therapy and reveal opportunities for precision medicine. Comparison of the genomic landscapes of CTCs and tissue metastases is complicated by challenges in comprehensive CTC genomic profiling and paired tissue acquisition, particularly in patients who progress after targeted therapy. Thus, we assessed by NGS somatic mutations and copy number alterations (CNA) in archived CTCs isolated from patients with metastatic breast cancer who were enrolled in concurrent clinical trials that collected and analyzed CTCs and metastatic tissues. In 76 individual and pooled informative CTCs from 12 patients, we observed 85% concordance in at least one or more prioritized somatic mutations and CNA between paired CTCs and tissue metastases. Potentially actionable genomic alterations were identified in tissue but not CTCs, and vice versa. CTC profiling identified diverse intra- and interpatient molecular mechanisms of endocrine therapy resistance, including loss of heterozygosity in individual CTCs. For example, in one patient, we observed CTCs that were either wild type for ( = 5/32), harbored the known activating p.Y537S mutation ( = 26/32), or harbored a novel p.A569S ( = 1/32). p.A569S was modestly activating, consistent with its presence as a minority circulating subclone. Our results demonstrate the feasibility and potential clinical utility of comprehensive profiling of archived fixed CTCs. Tissue and CTC genomic assessment are complementary, and precise combination therapies will likely be required for effective targeting in advanced breast cancer patients. These findings demonstrate the complementary nature of genomic profiling from paired tissue metastasis and circulating tumor cells from patients with metastatic breast cancer. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.